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1 Abstract

Mixed order hyper networks (MOHNs) [7] are neural network models capable of representing any
function in f : {−1, 1}n → R. They are linear parameter models, which means there are convex cost
functions for estimating the weight parameters and they can learn from a noise free data sample
equal in size to the number of weights in the network. These qualities make then highly suitable for
use as fitness function models when attempting to optimse a function [5]. The proposed thesis will
investigate and compare methods for searching a MOHN once it has been learned, making use of
the explicit way in which the function expresses the constraints to be optimised.

2 Introduction

Heuristic optimisation is concerned with the design and development of heuristic algorithms capable
of finding the inputs to a given function that optimise some aspect of its output (maximise or
minimise it, for example). Most methods rely on evaluating one or more candidate solutions at a
time and allowing the output from those solutions to guide the generation of new solutions. Where
the function being searched is expensive to evaluate, it is important to minimise the number of
candidate solutions processed. One way to do this is to build a statistical model of the function
and optimise that instead. This is known as fitness function modelling. For functions that can
be modelled in fewer evaluations than it takes to optimise them, this can provide considerable
improvements in the speed with which solutions are found. However, it still leaves the problem of
how to search the model. Further gains can be made if the model’s structure can be used to guide
that search.

Mixed order hyper networks (MOHNs) are universal function models in f : {−1, 1}n → R and
can learn a function in a number of noise free samples equal to the number of parameters in the
model. This places a bound on the number of function evaluations required to learn the function.
A MOHN representation allows the easy extraction of a set of weighted weak constraints that make
the form and complexity of the function being optimised explicit. As the MOHN can represent
any real valued function of binary inputs, it can also represent any optimisation problem as a set
of such constraints. The constraints may then be used to guide the search for an optimal input.
Swingler has presented experimental results that show a MOHN can learn and optimise a number
of benchmark functions in fewer fitness evaluations than state of the art methods such as BMDA [2]
DEUM [4], BOA [1], hBOA [9], and Boltzmann EDAs [3].
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3 Proposal

Let Xi, i = 1 . . . n be a vector of n binary variables. A MOHN can represent any real valued fitness
function, f(X) as a set of m weighted weak constraints in the form

sign(
∏
i∈Ij

Xi) = sign(ωj), j = 1 . . .m (1)

where ωj ∈ R, j = 1 . . .m represents a set of weighted constraints and Ij , j = 1 . . .m represents
a set of index sets that define which elements of X are involved in each constraint. The value of
each ωj specifies the importance (or weight) of the constraint. Constraints can conflict, so there are
many functions in which only a subset of the constraints can be satisfied. Maximising the output
of the function is equivalent to satisfying the set of compatible constraints with the largest sum of
weights.

The proposed PhD will investigate and compare methods for satisfying the constraints as defined
in equation 1. There is also scope for further investigation of hybrid methods for learning and
searching MOHNs with the goal of minimising the number of fitness function evaluations. The work
is well suited to PhD study as it is very clearly defined, certainly not trivial, and the existing literature
is easy to identify. The use of statistical models in optimisation represents an active research field,
though the majority of the work involves estimation of distribution algorithms (EDAs).

The student will compare existing optimisation methods and similar constraint frameworks such
as weighted MaxSat. This will lead to a number of different algorithms being proposed, implemented
and tested. A large set of benchmark problems from the existing literature will be used to test the
algorithms and a small number of real world examples will also be addressed.

4 Motivation

The motivation for using fitness functions and EDAs is well documented [8]. They can reduce
the number of evaluations needed and transfer the work of searching to a faster statistical model.
Further gains can be made if the structure of the model facilitates the search. The bulk of current
work in the field involves EDAs, but recent results have shown that MOHNs can solve a number
of benchmark problems in fewer (in some cases, orders of magnitude fewer) fitness evaluations that
these methods.

Additional motivation for the MOHN approach comes from its universal nature. There is no
function in f : {−1, 1}n → R that cannot be represented as a set of constraints in the form defined
in equation 1. Good methods for solving problems in that form will be widely applicable. Not all
functions may be efficiently specified in this way, and more work is needed on identifying appropriate
functions. The project fits well withing the data science theme of the computing science and maths
strategy.

5 Supervision

Kevin Swingler has just completed a PhD on the subject of MOHNs. Many of the findings cited
above come from that work. His thesis has led to ten publications in journals, conferences and book
chapters. Two of the conference papers were short listed for best student paper and one of them
won that award [6].
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