(For Images)

Types of Compression

« Pixel packing

¢ RLE (run-length encoding)
< Dictionary-based methods
« JPEG compression

« Fractal Image Compression

Factors to look out for:

« Lossy or lossless compression?

* What sort of data is a method good at compressing?
« What is its compression ratio?

% Richardson, Chapter 6; Chapman & Chapman, Chapter 5

Pixel Packing

« Not a standard “data compression technique” but
nevertheless a way of not wasting space in pixel data
. eg.
— suppose pixels can take grey values from 0-15
— each pixel requires half a byte
— but computers prefer to deal with bytes
— two pixels per byte doesn't waste space
« Pixel packing is simply ensuring no bits are wasted in
the pixel data

Run Length Encoding (RLE)

Basic idea is this:
« AAAAAAAAAAAAAAA would encode as 15A
*« AAAAAAbbbXXXXXt would encode as 6A3b5X1t

So this compression
method is good for
compressing large
expanses of the same
colour - or is it?

RLE compression ratio

« Of the 110 pixels in the 10~ 11 pixels sample taken from
the previous image, 59 different colours altogether!

« RLE compression ratios not good in general, because
there are rarely repeat runs of pixels

Full image: 371" 247 bitmap

275Kb raw data
(274911 =371" 247" 3)bytes

91K RLE encoded

Compression ratio approx 3:1 in this case

RLE compression ratio

« Another example, with a diagram this time

Safe dimensions for Web page graphics

TS0 pixels
13- 15 1nch sereen (640 x 480}
Browser safe ares 600x 350)

00 pixels

Full image: 350 * 264 bitmap

277Kb raw data = Use blue dimensions to ill the
_ P . PER maximum safe area on most screens
(277200=350" 264" 3) bytes = Use red dimensions for pages that

585 picels will print well

US Letter size page = 535 by 670 pixels ssfe area

46.5K RLE encoded

Compression ratio approx 6:1 in this case

Dictionary Methods

A common way to compress data (pixels, characters,
whatever!) is to use a dictionary

The dictionary contains strings of bytes

— e.g. particular pixel patterns

— not limited to patterns of one colour, as with RLE

Data is encoded by replacing each data string that
has an entry in the dictionary with its index number in
the dictionary

Shorter to write an index number than a whole string!
Dictionary may be particular to the image, or may be
“standard” for particular image types

Patterns of Pixels

« Poor results with RLE as runs of pixels with same
colour are very short

< But there are repeating patterns with two colours that
could be included in a dictionary

« Hence, could replace each byte pattern with a pointer
to it (or its index number in the dictionary)

.

Huffman and CCITT Compression

Developed for fax machines and document scanners
Uses a predefined dictionary of commonly occurring
byte patterns from B&W documents containing large
amounts of text in a variety of languages and typical
examples of line art

Commonly occurring patterns are given low (short)
indices (codes) in the dictionary

Data is encoded by replacing each image string that
occurs in the dictionary with its index number
Dictionary is not part of the compressed file.

The Lempel-Ziv-Welch Algorithm

* The Lempel-Ziv-Welch method is another such
dictionary algorithm, in which the dictionary is
constructed as the encoding (compression) progresses

— (actually Ziv was the first author on the original papers!)
* LZW starts with a dictionary:
— Entries 0-255 refer to those individual bytes
— Entries 256 onwards will be defined as the algorithm progresses

« Each time a new code is generated it means a new
string of bytes has been found.

« New strings are generated by appending a character ¢
to the end of an existing string w.

10

The LZW Algorithm (2)

set w = ;
while (not EOF)
read a character c;
if wtc exists in the dictionary
W = w+C;
else {
output the code for w;
add w+c to the dictionary;
w = Cj;
¥

endwhile

A Pixel Example

Pixel data to encode (all pixels of same colour in this example):
0 o o [o o
IRURIRINIRIRINIRIRINIS

Dictionary:

#256 [
#257 DEE
#258 [MOOE

Output: [0 #256 #257 #258 [

12

When Is LZW Useful?

.

Good for encoding pixel data with a limited palette,
and/or repetitive data

— line drawings

— diagrams

— plain text on a plain background

« Not good for photographic images

— large colour range and complex features results in few
repeating patterns to include in a dictionary

see related tutorial question on character string
compression using LZW

JPEG

« Joint Photographic Experts Group
« Designed to compress photographs
— colour or greyscale
— good at compressing “real” scenes
— not good for line drawings, diagrams, lettering, cartoons
« Designed for human viewing, exploits our inability to see

a full range of colours (& to perceive high frequencies)
— Lossy algorithm

— Not good for computer analysis of data
« e.g. medical imaging

14

JPEG: How it works

Step 1:
« If a colour image, transform the image into a suitable

colour space, with a § (luminance or brightness, Y)
component

— e.g. from RGB to HSV / XYZ / Lab / YCbCr %
— not necessary for greyscale images

15

JPEG: How it works (2)
Step 2 (optional):
« Leave the Jdata alone, but “downsample” both lots
of colour data

* Reduce resolution by 2, in the y (and maybe x)
directions

16

JPEG: How it works (3)

Step 3:

« Divide the image (both Jand colour
data) into 8~ 8 pixel blocks

Step 4:

« For each block, perform a DCT (Discrete Cosine
Transform) on the data

« This takes the 64 (integer) values to a different 64
(non-integer) values

— amplitudes of spatial frequencies

JPEG: How it works (4)

Step 5: %

« Use quantization on these 64 values (divide by a
specially chosen number, and round to the nearest
integer)

— e.g. amplitudes of lowest frequencies may range from 0-255
— slightly higher frequencies have amplitudes divisible by 4

— highest frequencies may only have amplitudes of 0 or 128
Step 6:

« Store these numbers in a space-efficient way
— RLE and Huffman coding
— long strings of 0 coefficients

18

JPEG (contd)

« By choosing a different number in step 5 (the
quantization coefficient), we get different amounts of
compression

« Trade-off of quality versus size of compressed data

« Decoding a JPEG is the reverse process:

— unpack the efficiently-stored data

— do areverse DCT on both the colour data and the gto get
the 8 8 pixel blocks

— combine the colour data with the gand display the result
— BUT no recovery from the quantization processes

20

Text / background

boundary is a high
spatial frequency

- JPEG attempts to
smooth this!!

Textona
plain colour

Text onia
plain colour

.

.

JPEG Compression

How good is it?

For full-colour images, the best-known lossless
compression about 2:1

For reasonable quality, compression ratios of 10:1 or
20:1 quite feasible for JPEGs

— Clive’s picture compressed with a ratio of 15:1

For poor quality images (thumbnails?), 100:1
possible

Re-encoding loses more information

22

How Do We Compress Movies?

Compress individual frames using any of the
techniques mentioned already

— spatial compression

High, lossy compression is OK as the quality of
individual frames can be lower than for still images as
our perception is dominated by motion

Make use of limited changes between frames

— key frames

— difference frames

— temporal compression
More on this in a later lecture!

End of Lecture

Next lecture will look at the multitude of
different graphic file formats.

2

