
1

1

(For Images)

2

Types of Compression
• Pixel packing
• RLE (run-length encoding)
• Dictionary-based methods
• JPEG compression
• Fractal Image Compression

Factors to look out for:
• Lossy or lossless compression?
• What sort of data is a method good at compressing?
• What is its compression ratio?

Richardson, Chapter 6; Chapman & Chapman, Chapter 5

3

Pixel Packing

• Not a standard “data compression technique” but
nevertheless a way of not wasting space in pixel data

• e.g.
– suppose pixels can take grey values from 0-15
– each pixel requires half a byte
– but computers prefer to deal with bytes
– two pixels per byte doesn’t waste space

• Pixel packing is simply ensuring no bits are wasted in
the pixel data

4

Run Length Encoding (RLE)

Basic idea is this:
• AAAAAAAAAAAAAAA would encode as 15A
• AAAAAAbbbXXXXXt would encode as 6A3b5X1t

So this compression
method is good for
compressing large
expanses of the same
colour - or is it?

5

RLE compression ratio

• Of the 110 pixels in the 10 × 11 pixels sample taken from
the previous image, 59 different colours altogether!

• RLE compression ratios not good in general, because
there are rarely repeat runs of pixels

Full image: 371 × 247 bitmap

275Kb raw data
(274911 = 371 × 247 × 3) bytes

91K RLE encoded

Compression ratio approx 3:1 in this case

6

RLE compression ratio

• Another example, with a diagram this time

Full image: 350 × 264 bitmap

277Kb raw data
(277200 = 350 × 264 × 3) bytes

46.5K RLE encoded

Compression ratio approx 6:1 in this case

2

7

Dictionary Methods

• A common way to compress data (pixels, characters,
whatever!) is to use a dictionary

• The dictionary contains strings of bytes
– e.g. particular pixel patterns
– not limited to patterns of one colour, as with RLE

• Data is encoded by replacing each data string that
has an entry in the dictionary with its index number in
the dictionary

• Shorter to write an index number than a whole string!
• Dictionary may be particular to the image, or may be

“standard” for particular image types

8

Patterns of Pixels

• Poor results with RLE as runs of pixels with same
colour are very short

• But there are repeating patterns with two colours that
could be included in a dictionary

• Hence, could replace each byte pattern with a pointer
to it (or its index number in the dictionary)

9

Huffman and CCITT Compression

• Developed for fax machines and document scanners
• Uses a predefined dictionary of commonly occurring

byte patterns from B&W documents containing large
amounts of text in a variety of languages and typical
examples of line art

• Commonly occurring patterns are given low (short)
indices (codes) in the dictionary

• Data is encoded by replacing each image string that
occurs in the dictionary with its index number

• Dictionary is not part of the compressed file.

10

The Lempel-Ziv-Welch Algorithm

• The Lempel-Ziv-Welch method is another such
dictionary algorithm, in which the dictionary is
constructed as the encoding (compression) progresses
– (actually Ziv was the first author on the original papers!)

• LZW starts with a dictionary:
– Entries 0-255 refer to those individual bytes
– Entries 256 onwards will be defined as the algorithm progresses

• Each time a new code is generated it means a new
string of bytes has been found.

• New strings are generated by appending a character c
to the end of an existing string w.

11

The LZW Algorithm (2)

 set w = “”;
 while (not EOF)
 read a character c;
 if w+c exists in the dictionary
 w = w+c;
 else {
 output the code for w;
 add w+c to the dictionary;
 w = c;
 }
 endwhile

12

A Pixel Example

#256

#257

#258

#256 #257 #258

Pixel data to encode (all pixels of same colour in this example):

Dictionary:

Output:

3

13

When Is LZW Useful?

• Good for encoding pixel data with a limited palette,
and/or repetitive data
– line drawings
– diagrams
– plain text on a plain background

• Not good for photographic images
– large colour range and complex features results in few

repeating patterns to include in a dictionary

• see related tutorial question on character string
compression using LZW

14

JPEG

• Joint Photographic Experts Group
• Designed to compress photographs

– colour or greyscale
– good at compressing “real” scenes
– not good for line drawings, diagrams, lettering, cartoons

• Designed for human viewing, exploits our inability to see
a full range of colours (& to perceive high frequencies)
– Lossy algorithm
– Not good for computer analysis of data

• e.g. medical imaging

15

JPEG: How it works
Step 1:
• If a colour image, transform the image into a suitable

colour space, with a γ (luminance or brightness, Y)
component
– e.g. from RGB to HSV / XYZ / Lab / YCbCr
– not necessary for greyscale images

16

JPEG: How it works (2)
Step 2 (optional):

• Leave the γ data alone, but “downsample” both lots
of colour data

• Reduce resolution by 2, in the y (and maybe x)
directions

17

JPEG: How it works (3)

Step 3:

• Divide the image (both γ and colour
data) into 8 × 8 pixel blocks

Step 4:
• For each block, perform a DCT (Discrete Cosine

Transform) on the data
• This takes the 64 (integer) values to a different 64

(non-integer) values
– amplitudes of spatial frequencies

18

JPEG: How it works (4)

Step 5:
• Use quantization on these 64 values (divide by a

specially chosen number, and round to the nearest
integer)
– e.g. amplitudes of lowest frequencies may range from 0-255
– slightly higher frequencies have amplitudes divisible by 4
– highest frequencies may only have amplitudes of 0 or 128

Step 6:
• Store these numbers in a space-efficient way

– RLE and Huffman coding
– long strings of 0 coefficients

4

19

JPEG (contd)

• By choosing a different number in step 5 (the
quantization coefficient), we get different amounts of
compression

• Trade-off of quality versus size of compressed data
• Decoding a JPEG is the reverse process:

– unpack the efficiently-stored data

– do a reverse DCT on both the colour data and the γ to get
the 8 × 8 pixel blocks

– combine the colour data with the γ and display the result
– BUT no recovery from the quantization processes

20

21

Text / background
boundary is a high
spatial frequency
- JPEG attempts to
smooth this!!

22

JPEG Compression
How good is it?

• For full-colour images, the best-known lossless
compression about 2:1

• For reasonable quality, compression ratios of 10:1 or
20:1 quite feasible for JPEGs
– Clive’s picture compressed with a ratio of 15:1

• For poor quality images (thumbnails?), 100:1
possible

• Re-encoding loses more information

23

How Do We Compress Movies?

• Compress individual frames using any of the
techniques mentioned already
– spatial compression

• High, lossy compression is OK as the quality of
individual frames can be lower than for still images as
our perception is dominated by motion

• Make use of limited changes between frames
– key frames
– difference frames
– temporal compression

• More on this in a later lecture!

24

End of Lecture

Next lecture will look at the multitude of
different graphic file formats.

