Home Research Teaching Biography
Wen-shin Lee

Wen-shin Lee

Division of Computing Science and Mathematics
University of Stirling
Stirling FK9 4LA
Scotland, UK
Office: 4B100 Cottrell Building
Phone: +44  (0)1786 46 7458
Email:  wen-shin.lee@stir.ac.uk
URL:  www.cs.stir.ac.uk/~wsl
Publications
Preprints:
  1. Annie Cuyt and Wen-shin Lee
    An analog Chinese remainder theorem
  2. Matteo Briani, Annie Cuyt, and Wen-shin Lee
    A hybrid Fourier-Prony method
Journals and Refereed Proceedings:
  1. Annie Cuyt and Wen-shin Lee
    Multiscale matrix pencils for separable reconstruction problems
    Numerical Algorithms, published online, 2023
  2. Annie Cuyt, Yuan Hou, and Wen-shin Lee
    Validated analysis of modulated signals: from de Prony to Padé and beyond
    Journal of Computational and Applied Mathematics, 413:114346, 2022
  3. Ridalise Louw, Ferre Knaepkens, Annie Cuyt, Wen-shin Lee, Stefan J. Wijnholds, Dirk I. L. de Villiers, and Rina-Mari Weideman
    Antenna position estimation through subsampled exponential analysis of signals in the near field
    URSI Radio Science Letters, 3, 2021
  4. Ridalise Louw, Ferre Knaepkens, Annie Cuyt, Wen-shin Lee, Stefan J. Wijnholds, Dirk I.L. de Villiers, and Rina-Mari Weideman
    Antenna position estimation through sub-sampled exponential analysis of harmonically related input signals
    Proceedings of XXXIV General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science (Union Radio Scientifique International - URSI), 1-4, 2021.
  5. Yuan Hou, Annie Cuyt, Wen-shin Lee, and Deepayan Bhowmik
    Decomposing textures using exponential analysis
    Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), 1920-1924, 2021.
  6. Matteo Briani, Annie Cuyt, Ferre Knaepkens, and Wen-shin Lee
    VEXPA: Validated EXPonential Analysis through regular sub-sampling
    Signal Processing, 177:107722, 2020.
  7. Annie Cuyt, Yuan Hou, Ferre Knaepkens, and Wen-shin Lee
    Sparse multidimensional exponential analysis, with an application to radar imaging
    SIAM Journal on Scientific Computing, 40(3):B675-B695, 2020.
  8. Ferre Knaepkens, Annie Cuyt, Wen-shin Lee, and Dirk I.L. de Villiers
    Regular sparse array direction of arrival estimation in one dimension
    IEEE Transactions on Antennas and Propagation, 68(5):3997-4006, 2020.
  9. Annie Cuyt and Wen-shin Lee
    How to get high resolution results from sparse and coarsely sampled data
    Applied and Computational Harmonic Analysis, 48(3):1066-1087, 2020.
  10. Annie Cuyt, Wen-shin Lee, Min Wu
    High accuracy trigonometric approximations of the real Bessel functions of the first kind
    Computational Mathematics and Mathematical Physics 60 (1):119-127, 2020.
  11. Dirk I.L. de Villiers, Ridalise Louw, Rina-Mari Weideman, Annie Cuyt, Ferre Knaepkens, and Wen-shin Lee
    Practical performance of regular sparse array direction of arrival estimation in 1-d
    2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 112, 2019.
  12. Annie Cuyt, Ferre Knaepkens, and Wen-shin Lee
    From exponential analysis to Padé approximation and tensor decomposition, in one and more dimensions
    Proceedings of the 20th International Workshop on Computer Algebra in Scietific Computing (CASC 2018), Lecture Notes in Computer Science (LNCS) 11077:116-130, Springer, 2018.
  13. Annie Cuyt, Wen-shin Lee, Engelbert Tijskens, Wen-Ling Hong, Jr-Ping Wang, Tim Cools, and Tim Geerts
    Superresolution underwater acoustics
    Proceedings of Euronoise 2018 (ISSN: 2226-5147), 2845-2850, 2018.
  14. Annie Cuyt and Wen-shin Lee
    Multivariate exponential analysis from the minimal number of samples
    Advances in Computational Mathematics, 44(4):987-1002, 2018.
  15. Gerlind Plonka, Katrin Wannenwetsch, Annie Cuyt, and Wen-shin Lee
    Deterministic sparse FFT for M-sparse vectors
    Numerical Algorithms, 78(1):133-159, 2018.
  16. Annie Cuyt, Min-nan Tsai, Marleen Verhoye, and Wen-shin Lee
    Faint and clustered components in exponential analysis
    Applied Mathematics and Computation, 327:93-103, 2018.
  17. Matteo Briani, Annie Cuyt, and Wen-shin Lee
    Sparse interpolation, the FFT algorithm and FIR filters
    Proceedings of the 19th International Workshop on Computer Algebra in Scientific Computing (CASC 2017), Lecture Notes in Computer Science (LNCS) 10490:27-39, Springer, 2017.
  18. Matteo Briani, Annie Cuyt, and Wen-shin Lee
    Validated exponential analysis for harmonic sounds
    Proceedings of the 20th International Conference on Digital Audio Effects (DAFX17), 222-227, 2017.
  19. Annie Cuyt, Wen-shin Lee, and Xianglan Yang
    On tensor decomposition, sparse interpolation and Padé approximation
    Jaen Journal on Approximation, 8(1):33-58, 2016.
  20. Yongliang Zhang, Annie Cuyt, Wen-shin Lee, Giovanni Lo Bianco, Gang Wu, Yu Chen, and David Day-Uei Li
    Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection
    Optics Express, 24(23):26777-26791, 2016.
  21. Annie Cuyt, Wen-shin Lee, and Min-nan Tsai
    A short-time Prony method for the detection of transients
    Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016), Volume III, 4313-4321, 2016.
  22. Annie Cuyt and Wen-shin Lee
    Sparse interpolation and rational approximation
    Contemporary Mathematics, American Mathematical Society, 661:229-242, 2016.
  23. Mathieu Collowald, Annie Cuyt, Evelyne Hubert, Wen-shin Lee, and Oliver Salazar Celis
    Numerical reconstruction of convex polytopes from directional moments (.pdf)
    Advances in Computational Mathematics, 41(6):1079-1099, 2015.
  24. Sem Peelman, Joachim Van der Herten, Maarten De Vos, Wen-shin Lee, Sabine Van Huffel, and Annie Cuyt
    Sparse reconstruction of correlated multichannel activity (.pdf)
    Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS 2013), 3897-3900, 2013.
  25. Erich L. Kaltofen, Wen-shin Lee, and Zhengfeng Yang
    Fast estimates of Hankel matrix condition numbers and numeric sparse interpolation (.pdf)
    Proceedings of the International Workshop on Symbolic-Numeric Computation 2011 (SNC 2011), 130-136, ACM Press, 2011.
  26. Annie Cuyt and Wen-shin Lee
    Sparse interpolation of multivariate rational functions (.pdf)
    Theoretical Computer Science, 412(16):1445-1456, 2011.
  27. Annie Cuyt and Wen-shin Lee
    Extracting numerical factors of multivariate polynomials from Taylor expansions (.pdf)
    Proceedings of the International Workshop on Symbolic-Numeric Computation 2009 (SNC 2009), 35-44, ACM Press, 2009.
  28. Mark Giesbrecht, George Labahn, and Wen-shin Lee
    Symbolic-numeric sparse interpolation of multivariate polynomials (.pdf)
    Journal of Symbolic Computation, 44(8):943-959, 2009.
  29. Annie Cuyt and Wen-shin Lee
    A new algorithm for sparse interpolation of multivariate polynomials (.pdf)
    Theoretical Computer Science, 409(2):180-185, 2008.
  30. Wen-shin Lee
    From quotient-difference to generalized eigenvalues and sparse polynomial interpolation (.pdf)
    Proceedings of the International Workshop on Symbolic-Numeric Computation 2007 (SNC 2007), 110-116, ACM Press, 2007.
  31. Mark Giesbrecht, George Labahn, and Wen-shin Lee
    Symbolic-numeric sparse interpolation of multivariate polynomials [extended abstract] (.pdf)
    Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation (ISSAC 2006), 116-123, ACM Press, 2006.
  32. Mark Giesbrecht, George Labahn, and Wen-shin Lee
    Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation (.pdf)
    Proceedings of the 7th International Workshop on Computer Algebra in Scientific Computing (CASC 2004), 195-205, TUM Press, 2004.
  33. Erich Kaltofen and Wen-shin Lee
    Early termination in sparse interpolation algorithms (.pdf)
    Journal of Symbolic Computation, 36(3-4):365-400, 2003.
  34. Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee
    Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases (.pdf)
    Journal of Symbolic Computation, 36(3-4):401-424, 2003.
  35. Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee
    Algorithms for computing the sparsest shifts of polynomials via the Berlekamp/Massey algorithm (.pdf)
    Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC 2002), 101-108, ACM Press, 2002.
  36. Erich Kaltofen, Austin A. Lobo, and Wen-shin Lee
    Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm (.pdf)
    Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC 2000), 192-201, ACM Press, 2000.
Editorial Works:
  1. Annie Cuyt, George Labahn, Avraham Sidi, and Wen-shin Lee
    Sparse modelling and multi-exponential analysis (Dagstuhl Seminar 15251) (doi)
    Dagstuhl Reports, 5(6):48-69, 2016.
  2. Wen-shin Lee
    ISSAC 2014 poster abstracts
    ACM Communications in Computer Algebra, 48(3):98-147, Issue 189, 2014.
  3. Ruyong Feng, Wen-shin Lee, and Yosuke Sato
    Computer Mathematics -- 9th Asian Symposium (ASCM2009), Fukuoka, December 2009, 10th Asian Symposium (ASCM2012), Beijing, October 2012, Contributed Papers and Invited Talks
    ISBN 978-3-662-43799-5 (eBook) 978-3-662-43798-8 (Hardcover), Springer, 2014.
Conference Proceedings and Technical Reports:
  1. Annie Cuyt and Wen-shin Lee
    Spare interpolation and signal processing
    Development of Computer Algebra Rsearch and Collaboration with Industry, COE Lecture Note Vol. 49, 83-86, Kyushu University, 2013.
  2. Mark Giesbrecht, George Labahn, and Wen-shin Lee
    Symbolic-numeric sparse interpolation of multivariate polynomials [extended abstract] (.pdf)
    Proceedings of the 9th Rhine Workshop on Computer Algebra (RWCA 2004), 127-139, 2004.
  3. Mark Giesbrecht, George Labahn, and Wen-shin Lee
    On the equivalence between Prony's and Ben-Or's/Tiwari's methods (.pdf)
    University of Waterloo Tech Report CS-2002-23.
Ph.D. Dissertation:
  • Wen-shin Lee
    Early Termination Strategies in Sparse Interpolation Algorithms (.pdf)
    North Carolina State University, Raleigh, North Carolina, U.S.A., December 2001.
Patents
  • Annie Cuyt and Wen-shin Lee
    Smart data sampling and data reconstruction
    PCT/EP2012/06624, Filed August 20 2012, Granted November 28 2016
  • Annie Cuyt and Wen-shin Lee
    Smart data sampling and data reconstruction
    US 9,690,749, Filed August 20 2012, Granted June 27 2017
  • Annie Cuyt and Wen-shin Lee
    Smart sampling and sparse reconstruction
    1481/DELNP/2014, Filed February 2014
Software
  • SNIP
    Maple implementation of symbolic-numeric sparse interpolation algorithms for multivariate polynomials in [Giesbrecht, Labahn, Lee: 2006, 2009]. (source and experiments)
  • ProtoBox
    A Maple package implementing some of our devised early termination polynomial interpolation algorithms. (code source and experiments)
Projects
  • Resolution improvement of diffusion MRI images through model based and numeric-symbolic reconstruction
    January 1 2013 - December 31 2016, funded by the Research Foundation - Flanders (FWO)
  • Extracting multidimensional shapes: extending the state of art beyond polytopes
    January 1 2013 - December 31 2013
  • Extracting multidimensional shapes: integral invariants, cubature rules and Padé approximants
    January 1 2012 - December 31 2012
  • Compact representation of biomedical signals
    January 1 2011 - December 31 2014, funded by the Research Foundation - Flanders (FWO)
  • SmartCare
  • Parameterized model order reduction (PMOR): sparse data and sparse models
    January 1 2009 - December 31 2012, funded by the Research Foundation - Flanders (FWO)
  • Detection of singularities in surfaces and shapes
    April 1 2005 - March 31 2006