Are you a researcher in the
biological sciences?
Would you like to know more
about mathematical modelling?
This course will equip you with the concepts and basic skills of
mathematical and statistical modelling.
You will be guided through the key steps of researching the
question, formulating model frameworks, parameterisation and integrating data,
and performing model criticism.
Our course tutors have a mixture of physical and life science
backgrounds.
Where?
University of Stirling, School of Natural Sciences
When?
Monday 16th to Friday 20th February 2015 (5 days)
Who?
PhD students and early-stage researchers (below,
"students") with a biological background who wish to develop
interdisciplinary skills in mathematical modelling for the life sciences.
Cost?
Free! There are 25 fully funded places covering the costs of the
course registration fee, travel, accommodation and food for the week. Priority
will be given to those participants who are at least 50% funded by NERC. There
are an additional 5 places for which there is no registration fee but attendees
will have to pay for their own travel, accommodation and food.
Course aims:
Students in the biological sciences are increasingly turning to
mathematical modelling in the era of big data, the three Rs
of animal testing, and remote sensing. However, they often lack the background
necessary to create their own mathematical or statistical models. This course,
run by mathematicians, physicists and ecologists with experience in
epidemiology and terrestrial and marine ecology, will provide an introduction
to basic modelling concepts and a guide to using common skills. You will be
guided through the key steps of researching the question, formulating the model
framework, parameterising the model, and model criticism.
Each day will be split between morning lectures (which will
introduce mathematical techniques in conjunction with biological case studies)
followed by afternoon computer-lab practical sessions to put into practice the
concepts covered in the morning.
Exercises and lectures will make use of Matlab
or R. Both are commonly available (R is freeware) and flexible enough to
demonstrate all relevant techniques. The course tutors have a variety of
expertise in other platforms (e.g. C++, Mathematica,
etc.) and can advise students with specific needs.
Through the second half of the week, students will also work on
individualised projects (either developed themselves or with guidance by the
lecturers). Our high staff–student ratio will allow close supervision of the
students and individual development of these mini-projects using the techniques
that are most appropriate for their own research goals. We will also provide a
personalised further-reading programme and identify collaborators to enable
development of their project beyond the course week for those interested.
Course materials will be provided long-term via a secure website,
including lecture notes and computer code samples.
Professor of Aquatic Food Security
Lecturer in Aquatic Health Modelling
Senior Lecturer in Mathematics
Lecturer in Environmental Modelling
Lecturer in Mathematics
Lecturer in Aquatic Food Security
The course team have a background in different aspects of
mathematical biology and use a range of modelling and statistical techniques.
The team includes both mathematicians and physicists who apply modelling to
environmental and epidemiological problems (Norman, Hoyle, Kleczkowski, O'Hare)
together with ecologists who make rigorous use of mathematical and statistical
techniques (Green, McAdam). This provides participants with an opportunity to
learn from lecturers with a variety of backgrounds and modelling philosophies.
All the course team are part of the University of Stirling's
School of Natural Sciences. This is an interdisciplinary school, which
encourages the use of mathematics and computing science to carry out
problem-focused research.
·
Abstract and frame their
biological research questions in the form of mathematical models, and to
interpret and critically evaluate the results of both their own models, and
those of other authors.
·
Use generic modelling
and programming environments to construct and analyse their own mathematical
models.
·
Understand the link
between models and data analysis, and to use model parameterisation to both
inform models, and to estimate unknown properties of the ecological system.
·
Understand approaches to
modelling space as a key component of environmental modelling. One morning will
be devoted specifically to spatial models, using networks as a flexible
approach.
·
Interdisciplinary
thinking and the ability to collaborate with researchers in other disciplines.
·
Logical thinking and
critical analysis.
·
Presentation of complex
research findings to a non-expert audience.
·
Development of a
personal research project of interest to the researcher.
o Students will leave the course having taken the
first steps in trying to model their system in a way that is appropriate for the
questions they wish to ask.
o While the projects will be individual, students
will be encouraged to discuss their systems and exchange ideas and approaches
at all stages of project planning, development, and final presentation.
·
Provision of a tailored
further reading list and possible contacts for local collaboration.
·
Provision of detailed
study notes and example program code.