
1

1

Representing Graphical Data

Chapman & Chapman, chapters 3,4,5
Richardson

2

Graphics in IT82
What does “computer graphics” cover?

• Input, output, and representation of
graphical data

• Creation of graphics
– two-dimensional (flat) images
– three-dimensional “scenes”, with the

modelling of objects in virtual worlds

• Manipulation of existing data
• Graphics programming, with (e.g.)

– OpenGL
– increasingly, Java

IT82 traditional
“computer
graphics”
courses

2

3

Graphics in IT82
• We take a practically-oriented look at graphics
• Richardson’s “Practical Computer Graphics” is one of

the few books which takes this approach
• The aim is not to make you a “graphic designer”, but

instead:
– To give you an understanding of issues

concerning graphics input/output and
representation

– To equip you for practical situations where you
might need to use graphics, e.g. MultiMedia

• web pages of holiday snapshots, icon designs, lecture
presentations, suitable graphics file formats to use

4

Lectures Overview
This week:
• Basic principles of representing graphical data
• Practical graphics issues (e.g. fonts)
Next week / later:
• Representing colour
• Input/Output: Scanners, Cameras and Printers
• Basic principles of representing animation
• Compression of graphical data; storage in

appropriate file formats
• Overview of Java and Graphics

3

5

Representing Graphical Data

• Logical and Physical Representation
• Use of colour:

– Pixels
– Colours
– Transparency
– Palettes

• Types of representation:
– Bitmaps
– Vector data
– Other ways

6

Logical / Physical Representation
A warning to bear in mind:

• Physical representation of graphical data is how it
actually appears on devices

• A virtual/logical representation of graphical data may
be in a graphics file, or internally in a program

• These are often not the same!
• The differences vary from slight to very large
• Converting from a virtual representation to an actual

display on a device is called rendering.

4

7

Pixels
• All of “computer graphics” is based on properties of

screen or display device
• Displays are divided into lots of small dots called

pixels (PICture ELements)
• Pixel is smallest logical unit of display on the screen
• Can be monochrome (black and one colour) or

coloured
3 x 3 array of
coloured pixels

• Arranged (logically!) in a 2D grid

8

Pixels
• Physical display is different!
• Not necessarily a perfect 2D grid:

5

9

Colours of Pixels

• Black/white pixels are represented using bits
• Colours are specified (or get converted to) using

RGB values in some way (- see Lectures on Colour
later)

• A typical format is using 24 bits format
– (R,G,B) takes up 1 byte for each colour

• A common feature these days is to also have an
alpha channel , used for transparency. e.g. in Java 2,
– (R,G,B,α) takes up 4 bytes
– see Chapman & Chapman pg 135

10

Transparency

6

11

Colour Terminology
Lots of confusion:
• “Black and white” not good terminology to use
• Black and white photographs are not just black/white,

but really greyscale
• “Greyscale” refers to shades of grey, ie where the

RGB values are all the same
• “Monochrome” refers not to one colour, but

historically to “one colour with black”, so
“monochrome” really means two colours, usually
black and white

• “Monochromatic” in colour blindness refers to
greyscale!

12

Palettes
• A palette is a mapping from a small set of numbers,

to specifically chosen colours from a wide range (224

typically)
• “Indexed images” use palettes
• Used in various file formats, monitor displays

Example (web-safe palette, reproduced by all web-
browsers on any system using 8-bit colour)):

Chapman & Chapman, pgs 161-165

7

13

One way to represent image data
• Bitmapped formats: image is modelled by an array

of pixel values
• Bitmap data is (logically) a 2D array of pixels
• A bitmap gives the colours of the picture,

pixel-by-pixel (bit-by-bit), in this example:
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(each pixel is represented by one bit (on or off)

14

Bitmaps
• Bitmaps were also known (in ye olden days) as a

raster (the term is still in use in some circumstances,
as it defines a set of dots (pixels) arranged in parallel
lines)

• When there used to be just monochrome monitors,
bitmaps did indeed have bits in them!

• When colours were introduced, the term pixelmap
was used for coloured images.

• Nowadays, bitmaps can refer to 2D arrays of bits or
colours.

• Logically, bitmaps are 2D arrays, although in fact
they may be stored by other means
– Java 2 uses a 1D int array

8

15

Graphical Data Representation
• Bitmaps have a fixed resolution (amount of detail in

an image)
• There are other ways of representing image data

which do not:
– Some are general purpose
– Some are program-specific
– Some are application-specific

• In many state-of-the-art graphics programs, images
are represented internally in an application-specific
way, then exported to bitmap formats.

Richardson, Section 1.4

16

Another way to represent image data
• Vector-based formats contain descriptions of one or

more objects, rather than pixels
• Uses a “draw-then-edit” method of image creation
• Often the objects are mathematically based

– eg line segments, polygons, circles, splines

9

17

Vector formats are well suited to representing
2-D images such as pencil drawings, graphs and
architectural or engineering drawings

18

Bitmaps vs Vector Files

Bitmap files are fixed resolution

Vector files can be displayed at whatever level of detail
is preferred

10

19

Bitmaps vs Vector Files
Editing a
vector file

… and
in a
bitmap?

20

Bitmaps vs Vector Files
Further vector advantages:
• Good for storing images composed of line-based or

3D objects (e.g. wire-frame models)
• Easy to convert to bitmap format

Vector file disadvantages:
• Not good for storing complex images (such as

photographs)
• Appearance of image can vary widely, depending

upon the application
• Rendering of the image may take significantly longer

than for bitmaps

11

21

From Vectors to Bitmaps...

• Historically, vector data was used a lot.
• Pen plotters used pens to draw on paper (an early

form of graphics printer)
• These were cheap and produced line-based

drawings.
• Storage of high-volume bitmap files was expensive!

• With the advent of cheap storage, and high-resolution
output, now most images are bitmap-based.

• Bitmaps are everywhere!
– Just look at the WWW, with GIFs, JPEGs everywhere!

22

… and Back Again

• Trends are shifting towards a greater use of vector
data - the bitmap trend may not last!

• Memory size is again an issue
– Big bitmaps take longer to transport over the internet

• Vector-based formats are better for 3D imaging, and
3D imaging is growing more important (fuelled by
such concerns as the entertainment industry)

12

23

Other Graphics Representations

• Hybrid formats
– e.g. Metafile formats

• Fractal compression techniques

• Animation formats
• Special purpose 3D formats

24

Metafile Formats

• A metafile can store both vector and bitmap data
• A bitmap is typically regarded as one type of “vector”

object
• Typically most elements in the file are vectors, with

the occasional bitmap
– e.g. a bitmap stored as a “fill pattern” for a shape

Richardson, Section 6.9

13

25

Fractal Image Compression

• A recent development in image representation
• An image is represented by a mathematical formula
• To produce a display of the image on a device, the

formula is repeatedly applied to a (maybe) blank
“seed” image of the required size

• A resolution-independent way of storing images
• Although the word “compression” is used, really this

is just another way of representing an image
(encoding/decoding would be better terminology)

• It is compression because the formula takes up less
space than a bitmap would.

26

Example: Sierpinski Triangle

14

27

Transformation

28

Producing the Sierpinski Triangle
from any initial image

15

29

Use of Fractal Image Compression

• Typically an image would be originally in bitmap form,
before this technique is applied.

• The resulting image then has an optimal resolution
close to that of the original image.

• Magnification still looks nicer (softer, not pixellated)
with a fractally-compressed image.

• Sometimes representing an image in this way can be
used for image enhancement.

30

Magnification Example

Original bitmap x2 Fractal version x2

16

31

Fractal Compression
• Pictures that are very self-similar compress well

using this method
• Examples:

– Sierpinski triangle very self-similar
– Photograph with leaves in foreground and background would

have a lot of self-similarity

• Most pictures (photographs or diagrams) that
humans use have a lot of self-similarity

• Finding an example not suitable for fractal
representation is difficult.

• Fractal compression/encoding can take time but
decompression/decoding process is very fast, hence
also used for archived images in a CD-Rom
encyclopaedia

 Chapman & Chapman, pgs 109-110

32

End of Lecture

• Next lecture is on “Practical Graphics Issues”
– particularly to do with fonts

