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Representing Graphical Data

Chapman & Chapman, chapters 3,4,5
Richardson
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Graphics in IT82
What does “computer graphics” cover?

• Input, output, and representation of
graphical data

• Creation of graphics
– two-dimensional (flat) images
– three-dimensional “scenes”, with the

modelling of objects in virtual worlds

• Manipulation of existing data
• Graphics programming, with (e.g.)

– OpenGL
– increasingly, Java

IT82 traditional
“computer
graphics”
courses
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Graphics in IT82
• We take a practically-oriented look at graphics
• Richardson’s “Practical Computer Graphics” is one of

the few books which takes this approach
• The aim is not to make you a “graphic designer”, but

instead:
– To give you an understanding of issues

concerning graphics input/output and
representation

– To equip you for practical situations where you
might need to use graphics, e.g. MultiMedia

• web pages of holiday snapshots, icon designs, lecture
presentations, suitable graphics file formats to use
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Lectures Overview
This week:
• Basic principles of representing graphical data
• Practical graphics issues (e.g. fonts)
Next week / later:
• Representing colour
• Input/Output: Scanners, Cameras and Printers
• Basic principles of representing animation
• Compression of graphical data; storage in

appropriate file formats
• Overview of Java and Graphics
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Representing Graphical Data

• Logical and Physical Representation
• Use of colour:

– Pixels
– Colours
– Transparency
– Palettes

• Types of representation:
– Bitmaps
– Vector data
– Other ways
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Logical / Physical Representation
A warning to bear in mind:

• Physical representation of graphical data is how it
actually appears on devices

• A virtual/logical representation of graphical data may
be in a graphics file, or internally in a program

• These are often not the same!
• The differences vary from slight to very large
• Converting from a virtual representation to an actual

display on a device is called rendering.
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Pixels
• All of “computer graphics” is based on properties of

screen or display device
• Displays are divided into lots of small dots called

pixels (PICture ELements)
• Pixel is smallest logical unit of display on the screen
• Can be monochrome (black and one colour) or

coloured
3 x 3 array of
coloured pixels

• Arranged (logically!) in a 2D grid
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Pixels
• Physical display is different!
• Not necessarily a perfect 2D grid:
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Colours of Pixels

• Black/white pixels are represented using bits
• Colours are specified (or get converted to) using

RGB values in some way (- see Lectures on Colour
later)

• A typical format is using 24 bits format
– (R,G,B) takes up 1 byte for each colour

• A common feature these days is to also have an
alpha channel , used for transparency. e.g. in Java 2,
– (R,G,B,α) takes up 4 bytes
– see Chapman & Chapman pg 135
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Transparency
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Colour Terminology
Lots of confusion:
• “Black and white” not good terminology to use
• Black and white photographs are not just black/white,

but really greyscale
• “Greyscale” refers to shades of grey, ie where the

RGB values are all the same
• “Monochrome” refers not to one colour, but

historically to “one colour with black”, so
“monochrome” really means two colours, usually
black and white

• “Monochromatic” in colour blindness refers to
greyscale!
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Palettes
• A palette is a mapping from a small set of numbers,

to specifically chosen colours from a wide range (224

typically)
• “Indexed images” use palettes
• Used in various file formats, monitor displays

Example (web-safe palette, reproduced by all web-
browsers on any system using 8-bit colour)):

Chapman & Chapman, pgs 161-165
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One way to represent image data
• Bitmapped formats: image is modelled by an array

of pixel values
• Bitmap data is (logically) a 2D array of pixels
• A bitmap gives the colours of the picture,

pixel-by-pixel  (bit-by-bit), in this example:
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(each pixel is represented by one bit (on or off)
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Bitmaps
• Bitmaps were also known (in ye olden days) as a

raster (the term is still in use in some circumstances,
as it defines a set of dots (pixels) arranged in parallel
lines)

• When there used to be just monochrome monitors,
bitmaps did indeed have bits in them!

• When colours were introduced, the term pixelmap
was used for coloured images.

• Nowadays, bitmaps can refer to 2D arrays of bits or
colours.

• Logically, bitmaps are 2D arrays, although in fact
they may be stored by other means
– Java 2 uses a 1D int array
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Graphical Data Representation
• Bitmaps have a fixed resolution (amount of detail in

an image)
• There are other ways of representing image data

which do not:
– Some are general purpose
– Some are program-specific
– Some are application-specific

• In many state-of-the-art graphics programs, images
are represented internally in an application-specific
way, then exported to bitmap formats.

Richardson, Section 1.4
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Another way to represent image data
• Vector-based formats contain descriptions of one or

more objects, rather than pixels
• Uses a “draw-then-edit” method of image creation
• Often the objects are mathematically based

– eg line segments, polygons, circles, splines



9

17

Vector formats are well suited to representing
2-D images such as pencil drawings, graphs and 
architectural or engineering drawings
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Bitmaps vs Vector Files

Bitmap files are fixed resolution

Vector files can be displayed at whatever level of detail
is preferred
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Bitmaps vs Vector Files
Editing a
vector file

… and
in a
bitmap?
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Bitmaps vs Vector Files
Further vector advantages:
• Good for storing images composed of line-based or

3D objects (e.g. wire-frame models)
• Easy to convert to bitmap format

Vector file disadvantages:
• Not good for storing complex images (such as

photographs)
• Appearance of image can vary widely, depending

upon the application
• Rendering of the image may take significantly longer

than for bitmaps



11

21

From Vectors to Bitmaps...

• Historically, vector data was used a lot.
• Pen plotters used pens to draw on paper (an early

form of graphics printer)
• These were cheap and produced line-based

drawings.
• Storage of high-volume bitmap files was expensive!

• With the advent of cheap storage, and high-resolution
output, now most images are bitmap-based.

• Bitmaps are everywhere!
– Just look at the WWW, with GIFs, JPEGs everywhere!
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… and Back Again

• Trends are shifting towards a greater use of vector
data - the bitmap trend may not last!

• Memory size is again an issue
– Big bitmaps take longer to transport over the internet

• Vector-based formats are better for 3D imaging, and
3D imaging is growing more important (fuelled by
such concerns as the entertainment industry)
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Other Graphics Representations

• Hybrid formats
– e.g. Metafile formats

• Fractal compression techniques

• Animation formats
• Special purpose 3D formats
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Metafile Formats

• A metafile can store both vector and bitmap data
• A bitmap is typically regarded as one type of “vector”

object
• Typically most elements in the file are vectors, with

the occasional bitmap
– e.g. a bitmap stored as a “fill pattern” for a shape

Richardson, Section 6.9
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Fractal Image Compression

• A recent development in image representation
• An image is represented by a mathematical formula
• To produce a display of the image on a device, the

formula is repeatedly applied to a (maybe) blank
“seed” image of the required size

• A resolution-independent way of storing images
• Although the word “compression” is used, really this

is just another way of representing an image
(encoding/decoding would be better terminology)

• It is compression because the formula takes up less
space than a bitmap would.
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Example: Sierpinski Triangle
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Transformation
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Producing the Sierpinski Triangle
from any initial image
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Use of Fractal Image Compression

• Typically an image would be originally in bitmap form,
before this technique is applied.

• The resulting image then has an optimal resolution
close to that of the original image.

• Magnification still looks nicer (softer, not pixellated)
with a fractally-compressed image.

• Sometimes representing an image in this way can be
used for image enhancement.
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Magnification Example

Original bitmap x2       Fractal version x2
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Fractal Compression
• Pictures that are very self-similar compress well

using this method
• Examples:

– Sierpinski triangle very self-similar
– Photograph with leaves in foreground and background would

have a lot of self-similarity

• Most pictures (photographs or diagrams) that
humans use have a lot of self-similarity

• Finding an example not suitable for fractal
representation is difficult.

• Fractal compression/encoding can take time but
decompression/decoding process is very fast, hence
also used for archived images in a CD-Rom
encyclopaedia

     Chapman & Chapman, pgs 109-110
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End of Lecture

• Next lecture is on “Practical Graphics Issues”
– particularly to do with fonts


