
1

Page 1

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 89

Cache Memory

• The memory used in a computer consists of a hierarchy
• Fastest/Nearest CPU Registers
• Cache (may have levels itself)
• Main Memory
• Slowest/Furthest Virtual Memory (on disc)
• Fast CPUs require very fast access to memory

– we have seen this with the DLX machine
– access to data cache

• One other way for fast data access is the use of large register sets
– this is typical of RISC architectures (i.e. programmer architectures)
– and the set of actual registers is larger than this

• because of re-allocation/renaming

• and another aspect of this is the use of cache memory
– or indeed, the use of multiple cache memories

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 90

Basic concepts

• recently used instructions and data are kept in a very fast memory so
that the CPU does not have to access the main memory every time it
requires access to data

• the amount of data that can be held is such a cache is limited
– generally, it needs to be on-chip to be effective
– it needs to be accessed in one cycle
– so the size is limited by what can be placed on (the rest of) the chip

• the whole advantage of the cache is predicated on locality of
reference
– that is, that instructions and data recently used is likely to be used again soon
– instructions clearly show locality

• the great majority of executed instructions are inside loops

– data also shows locality
• though the advantage is a little less than the advantage of an instruction cache

2

Page 2

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 91

Aspects of Caches

• Transparency
– the cache should not be visible to the programmer at all
– it should take advantage of general characteristics of programs

• not require programs to be specially designed to take advantage of it
• this does mean that it is possible to write cache-defeating programs!

• Hit Ratio
– If a memory access finds the datum in the cache, this is a hit
– if not, this is a miss
– the hit ratio is defined to be

Hits

Hits + Misses

Clearly, high hit ratios (near one) are desirable.

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 92

Questions about caches

• there are 4 basic questions that a cache designer needs to answer in
designing a cache
– Where should a block be placed?
– How do we find a block in the cache?
– Which block should we replace on a miss?
– What happens on a write?

• The answers to these questions define the type of cache in use
• If a block of memory from the main memory can be placed in exactly

one place, we have a cache which is direct-mapped
• If the block can be placed anywhere, the cache is fully associative
• If there are a restricted set of places that the block can be placed, the

cache is set associative
• We will look at each of these in turn.

3

Page 3

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 93

Fully associative caches

• Cache line contains more than
one word (8 here)

• CPU address must identify
– which (if any) line has the word
– which word is required

• Most significant part of address
identifies the cache line
• less significant part identifies
the word in the line

– here, 29, 3 bits

• An associative memory search identifies which if any line holds the
address

– all the cache block address tags are compared with the CPU address
simultaneously

– this is essential to fast operation

tag

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 94

Direct mapping caches

• Each block can only be
inserted in one place

• No associative mapping
• CPU address is in 3 parts:

– tag identifies exactly 1 cache
block
– block no is compared with the
block no field in the cache line
– word (least significant) identifies
the word in the cache line

• For a 128-line cache tag field would be 7 bits,
• block field 22 bits, and word field 3 bits.
• Simpler hardware then associative cache

4

Page 4

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 95

Set-Associative Cache

• 2-way set-associative
cache

• Tag address selects one
out of 2 possible lines

• Block number is
associatively compared with
these 2 block ids

• For a 128 line cache, we
have a 6-bit (not 7) tag
field

• Block field is 23 bits
• This is a compromise between direct and fully associative caches.

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 96

Comparing cache techniques (I)

• On hardware complexity:
– Fully associative cache requires special fast associative memory hardware
– Direct mapping caches are much simpler in hardware terms
– Set-associative caches offer a compromise

• On usefulness
– direct mapping caches cannot normally cache blocks N, N+1 from main memory

(since they would go into the same cache line)
• This is a serious problem: many loops are bigger than one cache line, resulting ina

cache miss (and cache reload) during the loop
• This reduces the effectiveness of the cache

– fully associative caches do not suffer from this problem at all (but are complex)
– set-associative caches again proffer a compromise

5

Page 5

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 97

On replacement algorithms (II)

• straightforward for direct mapping caches
– which is a problem in its own right

• for set and fully associative caches, we need to decide which cache
line to overwrite.
– Random replacement

• choose one at random and replace it.
• Simple, easy to implement

– Least Recently Used
• choose the line read least recently, and replace it
• requires a counter associated with each cache line, and this is relatively expensive to

implement

• Random replacement is most frequently used.

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 98

Writing the cache back

• For caches which hold only instructions, this problem does not arise.
• For caches which hold only data, or for caches which hold instructions

and data this is a problem.
– Not as big a problem as one might imagine: reads dominate memory accesses,

making about 7% of the overall traffic (or 25% of the data cache traffic) writes.
– Still, it may not be neglected

• Two different techniques are in use
– write-through

• the information is written simultaneously to both the cache and the lower-level memory

– write-back (also known as copy-back)
• the information is written only to the cache
• when the cache block is replaced, it is written back to the lower-level memory

6

Page 6

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 99

Write-through versus write-back

• write-through has fewer problems - but leads to more traffic on the
bus
– slower but easier to implement
– main memory writes are more predictable

• they only occur on CPU stores

• write-back is more complex
– cache lines require an associated bit to show whether they have been altered or

not
• called the dirty bit.
• If the dirty bit is set, the the cache block must be written back when it is overwritten

– write-back may occur on a read as well as a write.
– Faster, since normal writes occur at cache speed
– some writes never go to memory at all!

• E.g. when a word is written, then written again before the cache line is overwritten

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 100

Example Caches (I: 68040 processor)

• 68040 processor
– 2 independent caches

• one for data, one for instructions

– Both are 4Kbyte long
– Both are 4-way set associative, with 64 sets, each of 16 bytes (64 * 4 * 16 =

4096)
– Each cache line has

• a valid bit (used t startup)

– and each data cache line has a 4 dirty bits (one per 32 bit word)
– The system can use either write-through or write-back techniques.

7

Page 7

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 101

Example Caches (II: Digital Alpha processor)

• The Alpha has 3 on-chip caches
– an instruction cache
– a data cache
– a second level cache
– it also allow for a 3rd level (off-chip) cache.

• Instruction cache
– 8Kbytes long
– Each line is 32 bytes long
– direct mapped

• Data cache is similar
– it is dual-read ported, and single write-ported
– uses write-through

• Write-through uses a write buffer
– this has 6 32-byte entries
– used to hold data to be written to main memory
– also uses write merging: the write buffer is updated by new write requests

Copyright 1998-2002 © Leslie S. Smith 31R6 - Computer Design Slide 102

Example Caches (III: Pentium)

• Like the Alpha, the Pentium has more than one level of cache.
• Different versions have different amounts of cache:

– 8, 16, 32Kb

• ...for both data and instruction
• Additionally, external (off-chip) cache can be added

– 256Kb or 512Kb

• and both write-back and write-thru are supported.
• Pentium 4:

– Data cache has 2 levels:
– L1 8Kbyte, 4 way set associative, 64 bytes/cache line. Write-through (to L2

cache). 2 clock load latency
– L2 256Kbyte, 8 way set associative, 128 bytes/line. Write-back. Latency is 7 clock

cycles.
– Instruction cache: Trace cache (uOP). 12K uOPs

