
1

Page 1

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 103

Vector and Parallel Processors.

• Vector processors are processors which have special hardware for
performing operations on vectors:
– generally, this takes the form of a deep pipeline specialized for this task.
– Some modern general-purpose CPUs also have vector facilities

• Pentium P4
• Power PC7451

• Parallel processors are processors with many near-independent CPUs
which collaborate on a single task.

• Both forms of processor can supply a major speedup in processing:
– but before we get carried away with this, let us examine speedup in a little more

detail

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 104

Amdahl's Law

• Amdahl's law provides the speedup we obtain by providing some
enhancement to performance that applies only to some fraction of the
task:

Overall Speedup = Execution time without enhancement
Execution time with enhancement

If we write
 F for the fraction of the process speeded up
 S for the speedup of this fraction

• Then the new execution time Enew = Eold(1-F) + Eold(F/S) so that
• so that the overall speedup, Soverall is

 Soverall = 1/((1-F) + (F/S))

2

Page 2

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 105

Amdahl's Law : graphically…

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 106

Vector Processors: why?

• Many computations involve vector operations:
– these may be operations directly on vectors, or matrix operations.

• They arise commonly in scientific and engineering calculations.
• Such operations commonly require hundreds of floating point

operations - mostly FP multiplies and adds.
• They also arise in graphics: there the operations are sometimes integer,

rather than FP.
• By optimizing the machine for these operations, they can run

considerably faster.
• On a normal CPU, there will be one instruction per arithmetic

operation.
• On a vector CPU, there will be one instruction per vector operation -

and this may involve hundreds of floating point operations.
• This also means that the instruction bandwidth is much reduced.

3

Page 3

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 107

Vector Processors: how?

• The usual technique is to add
* a number of vector registers, each able to store a vector (of some
fixed size)
* a number of vector functional units which can operate on these vector
registers.
* a vector load/store unit to interface the vector registers to the
memory
* some scalar registers for operations which involve a scalar and a
vector

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 108

Example Vector Processor Architecture

4

Page 4

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 109

Pipelining and performance

• Since one is aiming for performance, the arithmetic operations are all
highly pipelined.

• Long pipelines are particularly advantageous in a vector processor:
– if one is (e.g.) multiplying two vectors together, one knows in advance that one

needs to perform a large number of FP multiplies,
– there will not be any branches or any data hazards in the middle of the operation.

• Thus a deep pipeline may be used effectively without fear of stalling
– it is worthwhile providing the hardware required to support this.

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 110

Compiler implications

• There are language implications:
• the compiler needs to know that certain operations are vector

operations, so that it can generate appropriate code
vector of float x[100], y[100], z[100];
float a,b,c ;
.
.
z = a * x + b * y ;

• The word vector tells the compiler something about the data type
• It can then ensure that the vector hardware is used.

• This can present a mismatch between general-purpose programming
languages and vector processors.

5

Page 5

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 111

Measuring performance: Mflops and Mips.

• Performance of machines is frequently measured in terms of the
number of instructions which they can execute per second.

• For integer (and branch) instructions, the standard measure is Mips:
mega-instructions per second.

• For floating point instructions, the measure is Mflops: mega-floating
point instructions per second.

• It is clear that using a pipelined/superscalar integer pipeline will
improve the Mips rating of the processor;

• additionally, using a vector processing approach will increase the
Mflops rating. (Mips if it’s an integer vector processor)

Copyright 1999 © Leslie Smith 31R6 - Computer Design Slide 112

Mflops and Mips: a word of warning

• These measurements need to be considered with a pinch of salt: which
instructions are being measured?

• can the processor sustain this speed on a real instruction mix, or is this
number the maximum ever possible?

• can the Mflops rating really be achieved, or is the integer performance
such that there will be delays between vector operations?

• With a vector processor, one needs to consider exactly how much of a
speedup one will actually achieve.

• Amdahl's law is relevant here:
– if one speeds up the vector processing section by a factor of 100, and the vector

processing is 3/4 of the total processing,
– then the actual speedup will be 1/((1-3/4) + (3/4)/100) = 400/103: i.e. nearly 4
– … not quite so impressive!

