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Motivation

• Energy consumption matters!

• Data Centres
• 191 TWh in 2018 (1% of global electricity demand)1,2

• Smart phones
• CPU could reach 2.5x power consumption of screen or 

3G hardware on an S33

1 https://www.iea.org/reports/tracking-buildings/data-centres-and-data-transmission-networks
2 Masanet, E. R. et al. (2018), ”Global Data Center Energy Use: Distribution, Composition, and Near-Term Outlook”
3 A. Carroll and G. Heiser (2013) “The systems hacker’s guide to the Galaxy: Energy usage in a modern smartphone”
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Energy Measurement Approaches

• Direct measurements

• CPU time as a proxy

• Model-based
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Opacitor

• Modified 
version of 
OpenJDK

• Counts 
bytecodes as 
they are 
executed

• Applied to 
linear model 
based on model 
of Hao et al.4

4 S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile application energy consumption using program analysis,” in Proc. Int.

Conf. Softw. Eng. San Francisco, CA, USA: IEEE, 2013, pp. 92–101 7



Opacitor

• Advantages:
• Distinctions can be made between very similar programs
• Unaffected by anything else executing

• can be parallelised, or executed simultaneously with other 
programs

• No need for warmup
• Hao’s model was within 10% of hardware measurements for a 

set of mobile applications from the Google Play store

• But:
• In practice, energy use probably follows a conditional 

distribution rather than remaining constant per-bytecode
• Trade-off between generality of a static model (Opacitor) and 

the device-specific labour required for dynamic measurement
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Case studies: quicksort

• GP to generate quicksort pivot functions

• Average case O(n log n), worst case O(n2)

• Highly dependent on pivot function
• ideal is median

• Common heuristics:
• Middle index

• Random index

• Sedgewick (median of first/middle/last elements)
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Opacitor

Case studies: quicksort
• Choose r samples at random from the array; 

median of these is the pivot

• r is determined by a function generated using GP
• terminals l (input array length) and d (recursion depth)

• operators + - * /

• GP population 100; 200 generations; initial tree 
depth 2; maximum tree depth of 4

• Objective: minimise energy for quicksort on 
training set of 1000 arrays; each array 100 elements 
with “pipeorgan” distribution

10

Quicksort training 
arrays

GP Energy

Pivot fn



Experiment

• Apply middle/random/Sedgewick/GP pivots to:
• 1000 pipeorgan arrays of lengths from 8 to 262144

• 1000 random arrays of lengths from 8 to 262144

• (both repeated 100 times with different sets)
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Results on pipeorgan arrays
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Results on random arrays
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Case Studies: MLP

• Tuning the hyperparameters of a multilayer 
perceptron

• Trade-off a functional software property (error 
rate), against a nonfunctional property (energy)

• Target application is WEKA
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Case Studies: MLP

Label Parameter Type Range

a AF Parameter 0 Continuous 0,1

b AF Parameter 1 Continuous 0,1

c AF Parameter 2 Continuous 0,1

d AF Parameter 3 Continuous 0,1

h Neurons count in 
hidden layer

Integer 2,30

l Backpropogation
learning rate

Continuous 0,1

α Backpropogation
momentum

Continuous 0,1
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Experiment

• NSGA-II for find parameters; population 10; 400 
evaluations; SBX crossover (rate 0.9, dist index 20.0); 
polynomial real mutation (rate 1/7, dist index 20.0); 
binary tournament selection

• Objectives (both average of 5 train/valid repeats):
• Energy from Opacitor
• Error on validation data

• Well known UCI data sets: Pima Indians, Glass, 
Ionosphere, Iris; split to 2/3 training, 1/3 validation

• Two runs, with energy for:
• training only
• training + 1000 validations
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Results: training (Glass)
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Results: training+validation (Glass)
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Results: HLS, training (Glass)
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Hurray!

• We minimised both energy and error rate

• Some further digging (more datasets; including 
number of epochs, minibatch size) suggests a 
similar picture

• However, adding more hidden layers seems to 
introduce some kind of trade-off as we might have 
expected…
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MLP Experiment 2

Energy (joules) Error Hidden Layers Layer sizes

6693 0.246 3 4,5,5

2092 0.263 3 2,2,2

11396 0.351 4 8,3,1,9

2115 0.368 4 2,2,2,2
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experiment, but with multiple hidden layers…)



Case Study: OO-GI

• Similar idea to Darwinian Data Structures, and 
SEEDS framework5, developed independently

• Minimising just energy

• Exchanging collections drawn from three libraries:
• Java 8 Collections

• Google Guava 18

• Apache Commons 4

• Targeting classes in Guava and Apache Commons
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Case Study: OO-GI

• Look for:
• constructors (e.g. new HashMap<>());
• Factory classes (e.g. Maps.newHashMap()); 
• static creator methods (e.g. ImmutableList.of()).

• Find most specific abstract supertype (earliest of):
• java.util.SortedMap
• java.util.Map
• java.util.SortedSet
• java.util.Set
• java.util.List
• com.google.common.collect.Multimap
• com.google.common.collect.Multiset
• java.util.Collection
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Case Study: OO-GI
• Targets:

24

Class for modification

Variation 
points

Search space

com.google.common.collect.
ArrayListMultimap

3 2 738

com.google.common.collect.
ImmutableMultimap

5 674 325

com.google.common.collect.
LinkedListMultimap

6 7 513 072

org.apache.commons.collections4.map.
PassiveExpiringMap

3 50 653

org.apache.commons.collections4.set.
ListOrderedSet

4 38 416

org.apache.commons.collections4.bidimap.
DualHashBidiMap

6 2 565 726 409



Experiment

• Energy was measured for each class over 10,000 
repeat runs of a test program
• This called all unit tests for the class, and exercised 

methods not covered by the unit tests using randomly 
generated data

• GA had population size 500; 100 generations; 
single-point crossover (rate 75%); one-point 
mutation (rate 50%); binary tournament selection; 
5% elitism.

• 30 repeat runs for each target class
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Results
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Results

• GA matched best found by exhaustive search 
(where performed), but in far fewer evaluations
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Summary
• Opacitor: a tool to measure energy on the JVM
• Quicksort: a hyper-heuristic, tuning energy 

performance for given distributions of input data
• MLP: parameter tuning for energy; trading off 

functional properties with energy (and not dependent 
on a test suite!)

• OO-GI: exploiting the OO design to explore different 
implementations

• Caveats:
• Model not perfect
• Quicksort/OO-GI assumes adequate tests are available!

• sbr@cs.stir.ac.uk www.cs.stir.ac.uk/~sbr
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