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Value-added Optimisation

• A philosophy whereby we provide more than 
simply optimal solutions

• Information gained during optimisation can 
highlight sensitivities and linkage

• This can be useful to the decision maker:

– Confidence in the optimality of results

– Aids decision making

– Insights into the problem

• Help solve similar problems

• Highlight problems / misconceptions in definition
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Value-added Optimisation

• This information can come from

– the trajectory followed by the algorithm

– models built during the run

• If we are constructing a model as part of the 
optimisation process, anything we can learn from it 
comes "for free"

• Some examples from MBEAs / EDAs

– M. Hauschild, M. Pelikan, K. Sastry, and C. Lima. Analyzing 
probabilistic models in hierarchical BOA. IEEE TEC 13(6):1199-
1217, December 2009

– R. Santana, C. Bielza, J. A. Lozano, and Pedro Larranaga. Mining 
probabilistic models learned by EDAs in the optimization of 
multi-objective problems. In Proc. GECCO 2009, pp 445-452
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Markov network fitness model (MFM)

• Suited to bit string encoded problems

• Originally developed as part of DEUM EDA
– A probabilistic model of fitness, directly sampled to 

generate solutions, replacing crossover and mutation 
operators

• Markov network is undirected probabilistic 
graphical model
– energy U(x) of a solution x equates to a sum of clique 

potentials, in turn equates to a mass distribution of 
fitness

– energy has negative log relationship to probability, so 
minimise U to maximise f

• MFM can be used as a surrogate
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FM with Markov Networks
� Two aspects to building a Markov network:

– Structure

– Parameters (α)

� Model can be represented by:
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• Compute parameters using sample of population

• Variables are -1 and +1 instead of 0 and 1

� The terms in the MFM correspond to Walsh 

functions (can represent any bit string encoded 

problem)
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Building a Model

Calc Markov network parameters using SVD

0011 f=2

1011 f=1

1111 f=4

1001 f=1

1000 f=3

α0=-0.38   α1=0.16   α2=0.02   α3=-0.34
α01=-0.07  α02=0.25   α03=-0.11   α13=-0.11
α23=-0.25   α013=-0.34   α023=-0.02   c=-0.61
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MFM Predicts Fitness

• Example; for individual X={1011}

• Substitute variable values into energy function 

and solve:

� This can then be used to predict fitness as a surrogate

)()( xUexf −=
cxU ++−+−++−++−= 02301323130302013210)( ααααααααααα



9

MFM as a surrogate

• Can either

– completely replace fitness function (GA essentially 
samples the MFM)

– take a mixed approach, where MFM is retrained 
occasionally, and used to filter candidate solutions

• e.g. Speeding up benchmark FFs
– A. Brownlee, O. Regnier-Coudert, J. McCall, and S. Massie. Using a Markov network as a 

surrogate fitness function in a genetic algorithm. Proc. IEEE CEC 2010, pp. 4525-4532

• e.g. Speeding up feature selection
– A. Brownlee, O. Regnier-Coudert, J. McCall, S. Massie, and S. Stulajter. An application of 

a GA with Markov network surrogate to feature selection. International Journal of 
Systems Science, 44(11):2039-2056, 2013.

• Now we consider how the model might be mined



Mining the model (1)

• As we minimise energy, we maximise fitness. So to 
minimise energy:

• If the value taken by xi is 1 (+1) in high-fitness 
solutions, then ai will be negative

• If the value taken by xi is 0 (-1) in the high-fitness 
solutions, then ai will be positive

• If no particular value is taken by xi optimal solutions, 
then ai will be near zero

TxUxf /)())(ln( =−
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Mining the model (2)

• As we minimise energy, we maximise fitness. So to 

minimise energy:

• If the values taken by xi and xj are equal (+1) in the 

optimal solutions, then ai will be negative

• If the values taken by xi and xj are opposite (-1) in the 

optimal solutions, then aij will be positive

• Higher order interactions follow this pattern

TxUxf /)())(ln( =−

jiij xxα
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Examples with Benchmarks

• A few well-known benchmarks to get the idea

• In these experiments, the MFM replaces FF

• Solutions generated at random and used to 

train model parameters
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Onemax

• Fitness is the sum of xi set to 1
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Checkerboard 2D

• Form an s x s grid of the xi: fitness is the count 

of neighbouring xi taking opposite values
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Checkerboard 2D
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Checkerboard 2D
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RW Example: Cellular Windows

• Optimise glazing for an atrium in 
a building

• Switch on glazing in 120 cells

– 120 bits encoding

• Minimise energy use and 
construction cost

– Energy for lighting, heating and 
cooling

– Costly to compute: motivating use 
of surrogate
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Optimisation run

• Optimisation run used NSGA-II to find 

approximated Pareto-optimal solutions
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Optimisation run

• Trade-off and the specific designs in it are 

already helpful for a decision maker

• But:

– Lowest cost solution missing due to randomness

– Slightly odd window shapes

• What might be the impact of aesthetic 

changes to these solutions?
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Adding value

• Earlier paper tried two approaches

• Frequency that cells are glazed in the 

approximated Pareto optimal sets

+ shows glazing 

common to all 

optima

+ cheap to compute

- unclear how cells 

affect the objectives 

separately
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Adding value

• Local sensitivity – Hamming-1 neighbourhood 

of approx. Pareto optimal solutions
+ shows possible local 

improvements

+ shows impact on 

objectives separately

- needs further fitness 

evaluations
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Adding value

• Both of these approaches are useful, but could be 
supplemented…

• A surrogate could be mined to discover similar or 
additional insights into the problem

• Here, as a proof of concept, we train the MFM 
using solutions from the NSGA-II run, allowing for 
direct comparisons with the existing work

• Applies to energy and cost objectives for 
demonstration, though cost is cheap and 
probably doesn't need a surrogate in practice

• (no solutions passed back to algorithm at 
present)
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Lattice model structure

• Initial experiments used MFM with a lattice 

structure

– One aixi term for each cell

– One aijxixj for each pair of neighbouring cells in grid

• 400 highest fitness solutions from first 1000 used 

to train model



24

Lattice model structure

• Energy
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Lattice model structure

• Cost



26

Univariate structure

• Bivariate terms have no impact on objectives 

(no linkage) so tried univariate structure

– One aixi term for each cell

• 140 highest fitness solutions from first 400 

used to train model
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Univariate model structure

• Energy

• Bias towards the lower and outer edges

• Cells in these regions shouldn't be glazed

• Matches patterns seen in PF and local 

sensitivity analysis
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Univariate model structure

• Cost

• Values similar: cells have equal impact

• All positive: minimum cost solution is all 

unglazed
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Benefits

• Information comes without running additional 

fitness evaluations (in fact with a time saving, 

if use of surrogate speeds up run)

• Sensitivities linked explicitly to objectives 

(compared to analysis of PF)

• Analysis rooted in multiple generations of run, 

not just final one
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Value Added

• Could visualise the model as optimisation 

proceeds, as extra feedback, or as part of the 

final results

• Knowing the sensitive variables, we can adjust 

the solutions for factors not considered by the 

optimisation (e.g. aesthetics), aware of likely 

impact on optimality

– e.g fixing odd window shapes

• model may indicate where a metaheuristic has 

not fully converged on the global optimum
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Value Added

• If solutions match the model's suggestions, we 

can be more confident that they are optimal

• Counter-intuitive results can highlight errors in 

the model (perhaps the lack of linkage means 

that the model doesn't consider neighbouring 

glazing properly?)

• Model may suggest good solutions long before 

the EA has found them
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Conclusions

• If we have a model, it can be worth seeing if it 
contains useful information

• MFM used as a surrogate fitness function

• Mined the model for additional information 
about the problem to "add value" to the 
optimisation run

• How might MFM be extended to other 
representations?

• Can we adopt the mining approach for other 
model types?


