/

€ Genetic Improvement: Taking real-world
source code and improving it using
compvutational search methods

Seemundur O. Haraldsson, John R. Woodward, Alexander Brownlee

UNIVERSITY of i1 Ml Loughborough
STIRLING &% ¥ University

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI tutorial CECCO 2023.pdf

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal
© 2023 Copyright is held by the owner/author(s). This work is licensed under a Creative Commons

ACM ISBN 979-8-4007-0120-7/23/07. Attribution International 4.0 License.
https://doi.org/10.1145/3583133.3595044 http:/creativecommons.org/licenses/by/4.0/

GECCO 2023

https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf
http://creativecommons.org/licenses/by/4.0/

UNIVERSITY of

Instructors STIRLING

e Saemundur O. Haraldsson is a Lecturer at the University of Stirling. He co-organised
every version of this tutorial. He has multiple publications on Genetic Improvement,
including two that have received best paper awards. Additionally, he co-authored the
tirst comprehensive survey on GI 1 which was published in 2017. He has been invited
to give talks on the subject in two Crest Open Workshops and for an industrial
audience in Iceland. His PhD thesis (submitted in May 2017) details his work on the
world's first live Gl integration in an industrial application.

e Alexander (Sandy) Brownlee is a Senior Lecturer in the Division of Computing Science
and Mathematics at the University of Stirling. His main topics of interest are in
search-based optimisation methods and machine learning, with applications in civil
engineering, transportation and SBSE. Within SBSE, he is interested in automated
bug-fixing and improvement of non-functional properties such as run-time and energy
consumption; how these different objectives interact with each other; and novel
approaches to mutating code. He is also one of the developers of Gin, an open-source
toolkit for experimentation with Genetic Improvement on real-world software projects.

InStru Cto IS %‘%_ Loughborough

 University

® John R. Woodward is Head of Department at Loughborough University. Previously he was
Head of The Operational Research Group at the Queen Mary University of London. Formerly
he was a lecturer at the University of Stirling, and was employed on the DAASE project
(http://daase.cs.ucl.ac.uk/). Before that he was a lecturer for four years at the University of
Nottingham. He holds a BSc in Theoretical Physics, an MSc in Cognitive Science and a PhD in
Computer Science, all from the University of Birmingham. His research interests include
Automated Software Engineering, particularly Search Based Software Engineering, Artificial
Intelligence/Machine Learning and in particular Genetic Programming. He has over 50
publications in Computer Science, Operations Research and Engineering which include both
theoretical and empirical contributions, and given over 50 talks at International Conferences
and as an invited speaker at Universities. He has worked in industrial, military, educational
and academic settings, and been employed by EDS, CERN and RAF and three UK Universities.

Engineering and
Physical Sciences
Research Council

Overview
© Introduction

e Fixing Bugs and other examples
e Noteworthy papers and issues
e Getting involved

e Summary and Q&A

Genetic Improvement
of Software

human writes code computer improves it

“show

reme—s ony svwee = _each(funcTaomyuve: = — =150, C.prot
Lum.ﬁ:’f;f,‘mmm D(”‘(;;":“v;:;a::").s.7',c‘TMI('/IM—?’:?I\IZ‘.s)/:"')). 1
A 4 chis.elesent=a(b)}:C- VTR L .replace(/.*(?= 3
e -y 1£(d] (4= attr("), d=d88 how. bs. tab", {relatedTarget:e[0]
s), 0 Aata TR) rarget:b(0]}), 8a. Event (“show. bs. h.parent(), functio
st 47, foa. Evemt("hide.bs. 35", {re! b.closest(“117),c), this.activate(h, h.p J
ed()){vr g DHIc.or activate=function(b,d,e){func
“shown. bs. tab”, rdats tokeTas"tab®] " “aria-expanded”, 11),|
+> .active").resoveClass(“active")..end() . Find(‘[data-toggle="tab"] ').attr("ar P vl dc-”
da-expanded”, 10),h2(b[0] . of fsetuidth, b.addClass("in")) :b.removeClass (“fade b-Paf‘el_' (“» P!
()-find("[data-toggle-"tab"]"). attr("aria-expanded”, 16), e8&e() Jvar g=d.find("> .active"),h=e&&
)] 1114 Find("> .lm').)m);..lmhum..om('bsrranslﬂontnd",f).euulaterransitionEnd
v u.h.u,-n.m.c&o.n.fn.m.connm«mt,-.antab.nnconflict-r‘(.m t
2 M).::b(;‘dl:k.b;.:w.ﬂara»apl', "[data-toggle="tab"]",e).on(
return this.each(functi, var d= - " ix® -
 bhke[b]())) poar c-function(b, dy(c on(){var d=a DE:ASaTta(bs.affix"),f= ob;
(€44s. checkPosition, this)) o~ b LTS,d), this.$target=
" “hv_.u“'m::z’i::’(o(lkhbs.afﬁx.di(arapj" get=a

sition()};c.ver ckPositionw;
(a,b,c, 5C.VERSTON="3. 3

€,d)(var ethis. Starget. scro1 17, (), Futh »C.RESET="affiy affix-to,
Dreturn nulltecy(gqey 0p(), Fut element. offsat. P
Lot bt oy - P F - £0D) &R bot tom <)-8-thxs.star£
2"}, ¢. prototype et(e;g(-a'd)u-bl)ttom“

- unction()“f(th 2
is

Set();retunn

Justyna Petke

Functional [le/c@t
Properties

New Feature

aCcuracy

fyna Petke

_ PHYSICAL
Non-Functional

Properties

Execution Time

UNITS
Memory

Bandwidth

There is nothing
correct about a flat

battery
(BILL LANGDON)

Battery

Size

T rom

hat is Genetic Improvement

A wordy definition:
Genetic Improvement is the application of search-based

(typically evolutionary) techniques to modify software
with respect to some user-defined fitness measure.

It’s just GP - BUT starting
with a nearly complete

program
[Woltgang Banzhaf]

e m—

hat is Genetic Improvement

Improve Feature
Execution Auto-parallelisation Transplantation

time

Improve Improve
non-functional Functional

properties Properties

Improve
memory

Improve .
consumption
energy Automatic
consumption Software Bue une
Slimming

/

Genetic Programming overview

o @)

S ﬁ 5 2o
() Ghp oRoNoOINe & B
& ®

© O eI

] crossover
mutation

—Genetic Programming: GI's ROOTS

1.

o U W N

Aim — to discover new programs by telling the computer what we want it
to do, but not how we want it to do it — John Koza

How — we evolve computer programs using natural selection.
Starts from scratch (empty program)

Choose primitives (terminal set/FEATURES and function set)
Choose representation (tree based, graph based, linear e.g. CGP)

Choose fitness function, parameters, genetic operators.

— Gl forces “the full capabillities of
programming languages’- side
effects, ADFs, LOOPS

GP vs Gl: if you can’t beat them, join them.

John R. Woodward Colin G.Johnson Alexander E.I. Brownlee
University of Stirling University of Kent University of Stirling
Stirling Kent Stirling
Scotland, United Kingdom England, United Kingdom Scotland, United Kingdom
jrw@cs.stir.ac.uk C.G.Johnson@kent.ac.uk sbr@cs.stir.ac.uk
ABSTRACT (procedures, methods, macros, routines), and so GI has to

deal with the reality of existing software systems. How-
ever, most of the GP literature is not concerned with Tur-

Genetic Programming (GP) has been criticized for target-
ing irrelevant problems [12], and is true of the wider machine

What about Copilot/ChatGPT...¢

O Search or jump to... Pulls Issues Codespaces Marketplace Explore [y + ~

Large language models generate code!

Features Copilot

Replicate patterns given some prompt

Your Al pair programmer

Can lead to errors!” Related-but-incorrect solutions

GI search tests the code as it goes, so can be constrained to only produce
variants that (probably) work

Get Copilot for Business >

Compare plans

*Jones E & Steinhardt J. Capturing failures of large language models via human cognitive biases. In AH Oh, A 12
Agarwal, D Belgrave & K Cho, eds., Advances in Neural Information Processing Systems. 2022

v

opular Science

® easy to digest articles for non-specialists.

—Nttps://theconversation.com/computers-will-s
oon-be-able-to-fix-themselves-are-it-departm
ents-for-the-chop-85632

Computers will soon be able to fix
themselves — are IT departments for ?
the chop? I T

—nfttps://tTheconversation.com/how-computers
-are-learning-to-make-human-software-work-
more-efficiently-43798

How computers are learning to make
human software work more efficiently

June 25, 2015 10.08am BST

‘;;N‘?_T';Q> . |
b‘\‘\jé——igl &%‘e_ar:‘éi}@g\ .
NSRS e A U
(N 3%19‘“{‘“
A2 %ﬁ}% o \~§‘~§y 4

ttp://www.davidrwhite.co.uk/2014/11/27/ge
netfic-programming-has-gone-backwards/

Genetic Programming has gone Backwards

When Genetic Programming (GP) first arose in the late 80s and early 90s, there was one very defining characteristic of its application, which was so
widely accepted as to be left unsaid:

GP always starts from scratch

genetic- progrommmg/

<
-

-

o _ '
——— GO gle has genetic programming gone backwards
B —
- All Videos Images News Shopping More Seti

About 2,440,000 results (0.46 seconds)
TAG ARCHIVES: GEN
Genetic Programming has gone Backwards | David R. White

www.davidrwhite.co.uk/2014/11/27/genetic-programming-has-gone-backwards/ ¥
Genetic Improvement: tne >tory so tar

This blog post is based on a seminar given to the Department of Computer Science at the University of Manchester in April 2016; it also builds on the ideas
and talks of many fellow academics, who | acknowledge at the end of the article.

THE CONVERSATION

Arts + Culture Business + Economy Cities Education Environment + Energy Health + Medicine Politics + Society Science + Technology Brexit

Never mind the iPhone X, battery life
could soon take a great leap forward

September 13, 2017 2.29pm BST

Authors

Alexander Brownlee
Senior Research Assistant,
University of Stirling

n Jerry Swan

“Competent Programmers Hypothesis

1. programmers write programs that are almost perfect.

2. program faults are syntactically small (slip of finger, T/F)
3. corrected with a few keystrokes. (e.g. < for <=)

4. GI can find small patches.

5. Small changes are non-unique (write 7 lines code, or utter 7 words
before they're unique)

—Plastic Surgery Hypothesis.

the content of new code can often be assembled
out of fragments of code that already exist.

Barr et al. [71] showed that changes are 43% graftable from the exact
version of the software being changed.

The Plastic Surgery Hypothesis: Changes to a codebase contain snippets
that already exist in the codebase at the time of the change, and these
snippets can be efficiently found and exploited.

THE CODE CONTAINS SOLUTIONS - CANDIDATE PATCHES

~—Representations of PROGRAMS

Natural Representation of CODE

1. Text files e.g. Program.java is a text file. Saemi.
2. Abstract syntax tree (AST) — Genprog, Genofix.
3. Javabyte code (also C binaries) [102]

4. Errors, compile, halting (Langdon - discard)

—Objectives

e Functional (logical properties)
e Accuracy e.g. as in machine learning - FLOAT
e Number of bugs — as measured against a set of test cases. BOOLEAN
e New functionality —e.g.

® Non-functional (physical properties)
e Execution time
e Energy (power consumption — peak/average)

e Memory
e Bandwidth

® Multi-objective
e Trade-offs, convex, a set of programs = a single tuneable program

—Mult-Objective

® Seems be convex

® — simple argument (see pic)

e Can provide a set of programs 1

e weighted sum of objectives?

% error

e weight has meaning to user.

® Will there be elbow/knee points?

0% 1 & TN

) 50 100%
Energy reductio

No error Human acceptable

oW connections.

Loading Gmail

Loading standard view | Load basic HTML (for slow connections)

—GISMOE

The GISMOE challenge:

to create an automated program
development environment in

which the Pareto program surface

is automatically constructed to

support dialog with and decision
making by the software designer
concerning the trade offs present ir

the solution space of programs for

a specific programming problem. ¥

&

Figure 1: The GISMOE Pareto Program Surface

L RS R L IR S S SRS S e S E

Power

gttt i
v,
i ,
ST o U R
i
. o
N

Execution time

EDIT Operators — changes to programs

® Line level

e Single Character level

e Function/module level.

e AST - GIN, Gen-0-fix, genprog,

® Java — machine code —java byte code.

e LIST OF EDITS IS A PATCH.

M An example of execution time
Optimisation

static final int INVALID 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

ifa+tb<c

delay();

assert(a <= b & & b <= ¢);
if (a + b <=¢) {
return INVALID;
} else if (a == b & b == ¢) { .
return EQUALATERAL; INVALID ifa==bandb
} else if (a==b || b == ¢) { -
return ISOCELES;
} else {
return SCALENE;
}

} EQUALATERAL if a==b or b==c

private static void delay() {
try {
Thread.sleep(100);
} catch (Inter;uptedExceptlon e) { ISOCELES
// do nothing

}

- An example of Fbug
fiXing

static final int EQUALATERA
static final int ISOCELES = 3

= 0;
= 1;
L

= 2;
i

public static int classifyTriangle(int a, int b, int c¢) {

ifa+tb<c

assert(a <= b & b <= ¢);
if (a + b <=c¢c) {
return INVALID;
} else if (a == b && b == ¢) {

return ISOCELES; e, ifa==bandb
} else if (a==b || b == °’,L,—> INVALID :
return EQUALATERAL; 4
} else {
return SCALENE;
}
¥ ISOCELES if a==b or b==

private static void delay() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {

// do nothing
} EQUALATERAL

| — |
Neutral el 4 &l structure
networks ¢ N "
S - |
Graceful T == T |
o T climber
degradation R

Fig. 1. Local optima network of the Triangle Program using 100 random starts
(see Section 4.4). Edges are coloured if they start and end at the same fitness.
Insert shows fitness levels edge on. Best (bottom) red 0 (pass all tests), pink 1
(fail only one test), green 2, purple 3, orange 4, brown 5.

~—System Diagram for Gen-O-Fix

Client - 4

Application Gen -o- Fix ance

o

Dynamic adaptation

LA '
| Pl 8
-_Generates = Energy
3*@3 [Optimses) E‘
for embedded systems Q
Integrity

Source + Binary

~—Gen-O-Fix: Abstract Syntax Trees

Main features of framework are
1. Embedded adaptively.

2. Minimal end-user requirements.

1. Initial source code: location of Scala source code file
containing a function

2. Fitness function: providing a means of evaluating
the quality of system

3. Source to source transformations
4. Operates on ASTs (i.e. arbitrarily fine).

- scalo

Code as data, data as code.

// code to data:

var m = 2; var x = 3; var c = 4

val expr = reify((mx*x x) 4+ c)
println("AST = " 4 showRaw(expr.tree))
Ly OHTHIE

AST = Apply(Select(Apply(Select(Select(Ildent("m"),
"elem”) ," $times”), List(Select(ldent("x")),

"elem”))),” $plus”),List(Select(ldent("c”),”elem”)))

// run AST datatype as code:
printin("eval =" + expr.tree.eval())

// output:
eval = 10

—
—

Gen-0-Fix Web-service Dashboard - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

ol (- 1

v & |Bv coogle

MB G QSN @®% 2 R & TiMendeley i () B © O:help FBus Fpool B §

Real Data
- - Prediction

.- Gen-O-Fix Empire ..

Q | csasaa.. | Edscala - G.. | M The Scal... | w Scala (pr... [S Scala in ... | s Allassia... | @ Edit fidd... B Getting ... [Qbootstrs... |$F Typesa... | Gen-.. |
® ' @ localhost:2000

ol I @ v @ » v

¥ Gem-O-Fix Polynomial Stock Predictor

John Woodward (Stirling)

£+ Soma(((x: Double) => 0.4515267279707613"(x)"(x)*(x)+(0.15731708770383146*

(x)*(x).unary_Splus)+(0.2569003224041494%(x))/(0.529762)))

L Some{((x: Double) => 0.4515267279707613"(x)*(x)"(x)+{0.15731708770383146"

(x)*(x).unary_Splus)+(0.2599003224041494"(x))/(0.529762)))

£+ Some(((x: Double) => 0.4515267279707613(x)"(x)"(x)+(0.15731708770383146"

(x)"(x).unary Splus)+(0.2589003224041494%(x))/(0.529762)))

£ Some(((x: Double) => 0.4515267279707613*(x)*(x)*(x)+{0.15731708770383146*

(x)*(x).unary_Splus)+(0.2589003224041494%(x))/(0.529762)))

£ Some(((x: Double) => 0.4515267279707613"(x)"(x)"(x)+(0.15731708770383146"

(x)*(x).unary Splus)+(0.2599003224041494%(x))/(0.529762)))
M { . In c - ful®

- MAAMAS N 187 TTN831{AR*

[]

v

v

—GIl Hashcode tuning

1.

Hadoop provides a mapReduce
implementation in Java.

Equals method has to obey contract
(Reflective, Symmetric, Transitive, ...)

x.equals(y) implies hashCode(x)==
hashCode(y).

hashCode method is an integer
function of a subset of an object’s fields

—Some GP Settings

1. Terminal set is

1. Field values
2. Random integers [0, 100]

2. Function set is
1. {+ * XOR, AND}

3. Fitness function: close to uniform distribution of
hashes (uniform distribution is the ideal), over
10,000 instances.

ution O

=
2 [3
2. -
= s
F g g
7
& 2
g &
I_ -
“° 1t =7
-2.0e+09 -1.5e+09 -1.0e+09 -5.0e+08 0.02+00 -2e+09 -1e+09 0Oe+00 1e-09 20+00
hashCode value hashCode value
600+
600
400+
Buoo ey
2 e
o [
=2 3
& g
e fr
200 2004
0 0
T 2 3 45 6 7 8 0 1omn 12 13 14 15 16 i 2 3 4 5 6 7 8 9 101 12 13 14 15 16
Hash buckets Hash buckets

Fig. 1: The distribution of the hashcode values (top) and the distribution of the created
objects in hash buckets (bottom), generated by the Apache commons (left) and the
evolved function (right)

e —

Overview

® Introduction

e Noteworthy papers and issues
e Getting involved

e Summary and Q&A

38

Fixing Bugs and other examples

Saemundur O. W.
e Fixing bugs

e Making software faster

Ref.:
EP/S005730/1

FIXIE
EPSRC

[.ancaster E=3 -
University # #

| o | Brunel
wf,» University
W' London

39

Fixing bugs

A real world example of GI in action

Saemundur O. Haraldsson, John R. Woodward, Alexander E. |. Brownlee, and Kristin
Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an
overnight success. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. |. E. Brownlee, "The Use of Automatic Test
Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires,
2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.0O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http:/hdl.handle.net/1893/26007

40

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007

Janus Manager

Management system
for rehabilitation
Web application

o Python source code
o >25KLOC

~200 users
o ~40 specialists
o 150-160 patients

In use since March
2016

60+ bugs
automatically fixed to
date

[—

Naireg o=

Work
requests

= Czurses N
r |
ther oup APPDlm I ?ta
- apies ments e

Recorgg
about
clients

Setlings

| Question. | <

sl

41

—

When last user logs out Daytime Night time

1. Procedure 2.0
e Sorts and filters the
day’s exceptions

Request
Output +
Input data

S ——

1
Input data
Caught exceptions

— 4
Daily log
file

42

—

When last user logs out

Procedure 2.0 started

Sorts and filters the
day’s exceptions

Procedure 3.0

Emulates input data,
type, size and
structure.

Produces test cases

Night time

e —

Caught exceptions

e —

When last user logs out Daytime Night time

1. Procedure 2.0 started
e Sorts and filters the
day’s exceptions
2. Procedure 3.0
e Emulates input data,

Request
U +
ser Input data

Output

type, size and I
1.0
structure. Process request R
Produce response T

e Produces test cases

3.0
Generate Test Cases

1
Input data
Caught exceptions

e —

4
Daily log Fizl-t?ar
file I

Unique errors

44

Procedure 3.0

—

‘name’:’John Dé6e’

‘name’:’Random John Dée String’
‘unemployed’:’34’
’phone’:’555-123’
‘home’:’Do not know’

Inputs for new test cases

A
4 A

UnicodeDecodeError

‘unemployed’:'34’ ‘name’:’John Dée’ Run
'phone’:’555-123' ‘unemployed’:’36’ l .
‘home’:’Do not know’ ‘phone’:’555-123’ app Ication

‘home’:’Do not know’

No UnicodeDecodeError

‘name’:'John Do6e’
‘unemployed’:’34’
'phone’:’555-123’
‘home’:’Do Random not String know’

45

When last user logs out

1. Procedure 2.0 started
e Sorts and filters the
day’s exceptions
2. Procedure 3.0
e Emulates input data,
type, size and structure.
e Produces test cases
3. Procedure 4.0
e Genetic Improvement
e DParallel process on the

server
e Outputs report for
developer

Output

R
|
|

Daytime

/ 1.0 \
Process request

Produce response /

s

Request

+

Input data

1
Input data
Caught exceptions

— 1
Daily log
file

Night time

Developer

Improvement
Report

4.0
Repair

3.0
Generate Test Cases

p

v

.

=

.

2.0
Filter
Unique errors

e [P’rocedure 4.0

e Genetic Improvement

Pop.= 50 patches

fit.= #passed tests
select="%2 pop by fitness
Output=report

.. Generate
Initiate)
population

Select
parents

Return
suggested

Evaluate
population

list of edits

47

//—\ 450 different patches j

y
e [P’rocedure 4.0

e Genetic Improvement Initiate Genergte Apply e.ach patch
population Run unit tests
e Pop.=50 patches

Z

o fit={#passed tests ’[‘ 7

e select="2 pop by fitness Top

e Output=report performing < __ Select Evaluate
patches T parents population

Return
suggested
list of edits

Did any patch pass
all tests?
Are we out of time?

48

4 different types of mplemented Edits

Primitive types: [~ Copy Y Delete =
e Copy

e Equivalent to:
CTRL+C -> CTRL+V
e Delete
e Almost what you think

Composite types:

e Replace
e Copy +Delete
e Swap

e 2x Copy + 2x Delete

| m——

Copy

e CTRL+C=>CTRL+V
e Applied to whole lines

e Some restrictions on what
lines can be copied
e Identified with regular
expressions

50

Delete

e Adds “#” to beginning of line
e “Comment”
e Applied to whole lines

e Some restrictions on what
lines can be commented out
e Identified with regular
expressions
e Can be reversed for
previously deleted lines
e “Uncomment”

51

Swap

e Copies both lines above each
other

e Then deletes the originals

e Applied to whole lines
e Like for like

52

Replace

e Copies one line above another
e Then deletes that line

53

Replace -- extra

e Deep parameter tuning

e Operator specific replacement
e and numbers too

e From a list of equivalent
operators.

54

. . . Copy
A list of edits makes a Sugges’rlon users.participants.funcs.134,

users.participants.funcs.165

e Reads like a recipe
e Step-by-step

Delete

. users.participants.funcs.166
e Automatically reduced

e Delta debugging

. Swap
e Scrutinised by the developer users.participants.funcs.169,

e Might change the recipe users.participants.funcs.171

Replace
users.participants.funcs.183: >,

users.participants.funcs.183: >=

55

A list of edits makes a suggestion

e Reads like a recipe
e Step-by-step

e Automatically reduced
e Delta debugging

e Scrutinised by the developer
e Might change the recipe

Copy
users.participants.funcs.134,

users.participants.funcs.165

Delete
users.participants.funcs.166

Replace

users.participants.funcs.183: >,
users.participants.funcs.183: >=

56

A list of edits makes a suggestion

e Reads like a recipe
e Step-by-step

e Automatically reduced
e Delta debugging

e Scrutinised by the developer
e Might change the recipe

Copy
users.participants.funcs.134,

users.participants.funcs.165

Delete
users.participants.funcs.166

Replace

users.participants.funcs.183: >,
users.participants.funcs.183: >=

57

A list of edits makes a suggestion

e Reads like a recipe
e Step-by-step

e Automatically reduced
e Delta debugging

e Scrutinised by the developer
e Might change the recipe

Copy
users.participants.funcs.134,

users.participants.funcs.165

Delete
users.participants.funcs.166

Replace
users.participants.funcs.183: >,

users.participants.funcs.183: >=

58

A list of edits makes a suggestion

e Reads like a recipe
e Step-by-step

e Automatically reduced
e Delta debugging

e Scrutinised by the developer
e Might change the recipe

Replace
users.participants.funcs.134,

users.participants.funcs.165

line 134:
d=form.get('date’,datetime.date.today())
line 165:

d=form.get('date")

line 183:

if d>datetime.date.today():

\/\

Replace
users.participants.funcs.183: >,

users.participants.funcs.183: >=

59

Summary

e Real-world example

e Catches inputs that
produce crashes

e Line(-ish) based GI
e 4 types of edits

e Overnight repair

e Developers are the
gatekeepers

. Generate
Initiate ;
population

Return
suggested
list of edits

Select

parents

Evaluate
population

N
No

Yes Search
inished?,

Night time

60

Faster

Another example of GI in action

Saemundur O. Haraldsson, John R. Woodward, Alexander E. |. Brownlee, Albert V.
Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness
landscape in a bioinformatics application. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY,
USA, 1521-1528. DOI: https://doi.org/10.1145/3067695.3082526

S.0. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http:/hdl.handle.net/1893/26007

61

https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

The soffware

ProbABEL

e A tool for Genome Wide
Association studies.

ICELANDIC HEART ASSOCIATION

6
e Collection of functions for 3#) M”“m S

o
regression models i 6 s 10 1216 610-20KpEOPI@ © 2 1w 6 1w

X4 X2

e Written in C and C++

o 8k LOC 12
. 10 +
o 31 files

3 8 g

e Typical execution time 6
around 8-12 hours \ e

élt GIS é 1I0 1]2 1l4 1]6 1I8 élt EIS é 1I0 1]2 1|4 125 1|8
X3 Xq

http://www.genabel.org/packages/ProbABEL 0

The Gl setup

e Same as before

Select

Evaluate \
population ‘
\

e Except for the
evaluation

Return
suggested
<t of edi

e Mean CPU time from
20 executions

e None compiling and
failing variants are not

discarded

63

Results

3.06

e 2 good variants found
early on

3.04

w
o
]

o < a second faster

w
o

o Generations 5 and 10

e Not statistically
significant on training

Execution time [seconds]

N
[
)

N
©
s

dataset

2:92

2.9 = :

Original Varian 1
Program variants

Results
e 2 good variants found
early on
0 < a second faster
o Generations 5 and 10

e Not statistically
significant on training
dataset

e Significant on a larger
dataset

o Still, only about 1 sec
faster

Execution time [seconds]

30.2

30.1

w
o
=)

N
©
©

29.8

N
©
S

N
©
o

29.5

29.4

' Variant 1—

Deletes a single line that
performs an expensive

-matrix multiplication

- -
=

Variant 2

"1 Changes: i++ to ++i

‘Gained improvement per execution

66

Better predictions

And even more examples of GI in action

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V.
Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE
Symposium on Computers and Communications (ISCC), Heraklion, 2017, pp.
242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K.
Siggeirsdottir, "Predicting changes in quality of life for patients in vocational
rehabilitation," 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems
(EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson,
E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016.
Determinants of outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI:
https://10.3233/WOR-162436

S.0. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

67

http://hdl.handle.net/1893/26007

e —

Dynamic updates to a prediction tool

e Used by Janus Rehabilitation

o Since June 2016

o Consulted in all team meetings

e Updated whenever there are new

information

o No developer as gatekeeper

e Target software is the updating

script
o Small python file

yANU

N3
Eus

Phoger®

7\ Gene rahelI / Sg"' . -ﬁau\ing

No No 1
(Testing Fit

| g
S Rt
Yes Terminate? ><Yesm splits? g Evaluate |

Historical data (a) Genetic Improvement ‘
2000-June 2016 Update prediction models I

Rmmhdy evnlumthe mive predictor by Predictor
comparing newest submission of IQL by patient Version 1.(i+)
i |

Added to historical data 1

Add patient's entries | g Patient treatment

Fig. 1. The cycle of providing treatment, collecting data and updating the predictive models. This cycle is simulated from June 2016 until December 2017
of the simulation

68

a¥N3

The predictions

e Vocational rehabilitation outcome
o Updated on every patient’s

discharge
o Successful / Unsuccessful
o Dropout
o Length

e Next measurement of Icelandic
Health-related Quality of Life
(IQL)

o Updated on every submission
of questionnaire

o 12 categories

© Measured every 3-6 months

yANU

Ens

0’14;\‘\

Historical data
2000-June 2016

Added to historical data

‘ (Testing Fit
N G
Yess Terminate? <Yesm splits? g Evaluate |

|
7‘ Generate ’ / Sglll -ﬁammg
No ' |

No

(a) Genetic Improvement ‘
Update prediction models

Retroactively evaluate the active predictor by }

Predictor

comparing newest submission of IQL by patient Version 1.(i+)

4
I

Patient treatment

[Add patient’s entries |
to training dataset

Fig. 1. The cycle of providing treatment, collecting data and updating the predictive models. This cycle is simulated from June 2016 until December 2017
of the simulation

69

Predicting the outcome

e Implemented in June 2016
o Forgotten about for 10 months

e 72 updates over the 10 month
period
o Reached maximum accuracy
early

e All predictions are for events that
had not occured.
o Real people
o Real events

1.05

1.00}

Proportion

(1112]1] AP—

0.85

Drop Out Precision
Drop Out Accuracy

Successful Treatment Precision
Successful Treatment Accuracy

Date
70

Predicting the IQL

e Simulation
o Bootstrapped accuracy
distribution

e Never under 92% accuracy in any
IQL subcategory

e Mean accuracy over 99%

Score

1.00 — o | — i o
0.99- le) (o] [e] o
0.98

o o o
0.97 -

fe) (o] o o e} (o] (o}
0.96
[} o o o
0.95
0.94
(o]
0.93
o
0.92
>
0’\6‘ é"o R & &f o +\.gc\ 00\@ & & \ooQ 0\00 &
o & & © 2 <& & N o' % N4 °
N) & & h > & &)
& [od R & < % N 5 N
& o 5 © > @
00 N i") ‘0 00
(< °‘>° Q’(‘ 000 "\\
) © &

e —

Overview

® Introduction

e Fixing Bugs and other examples

e Getting involved

e Summary and Q&A

72

roving CUDA DNA Analysis Software with

Genetic Programming (2015)
W.B. Langdon, B.Y.H. Lam, J. Petke & M. Harman

sowipTE

DNA sequencing A 50,000 line
o . system
2. consisting of 8,000+ lines
of code. Optimising Existing Software with
3. improved version is up to Genetic Programming
3X faSteI' William B. Langdon and Mark Harman
downloaded 1,000 times. *Bowtie2, a DNA sequence
5. Ported by IBM to one of alignment/sequence analysis tool

¢ Using Genetic Improvement, Harman
and Langdon were capable of
increasing performance 70x.

their super computers

A Systematic Study of Automated Program Repair:
Fixing 55 out of 105 Bugs for $8 Each

/

(2012)

Claire Le Goues Michael Dewey-Vogt
Computer Science Department
University of Virginia
Charlottesville, VA
{legoues,mkd5m} @ cs.virginia.edu

Stephanie Forrest
Computer Science Department
University of New Mexico
Albuquerque, NM
forrest@cs.unm.edu

Fitness = number of
passed test cases

—

Converted to AST

[cpP

ource
code
e . Mutation
0 O Operators:
- — Spectr Das Deletion
ault localisation Replace
(e.g. LOC visited in Co
0 Q only a buggy case — Py

Test cases high weight)

Cited ~400 times

Westley Weimer
Computer Science Department
University of Virginia
Charlottesville, VA
weimer@cs.virginia.edu

® Where an adequate test
suite is provided, GenProg
has been shown to fix
real-world bugs

® [t has inspired a variety of
alternative frameworks,
most of which claim to
outperform GenProg

Automated Software Transplantation —(2015) /

Earl T.Bar ~ MarkHarman YuedJia Alexandru Marginean Justyna Petke 2014
CREST, University College London, Malet Place, London, WC1E 6BT, UK PYE R .
{e.barr,m.harman yuejia,alexandru.marginean.13,j.petke}@ucl.ac.uk Babel Pidgin: SBSE Can Grow and Graft Entirely

, New Functionality into a Real World System
Featured in:

m I m E m Mark Harman, Yue Jia, and William B. Langdon
University College London, CREST centre, UK

English to Korean;
English to Portuguese

m muScalpel

Donor gt Host i

o o

Deep Parameter Optimisation for Face Detection /

= Using the Viola-Jones Algorithm in OpenCV

Bobby R. Bruce!™) Jonathan M. Aitken?(®™) and Justyna Petke!(®™)

Not A Face

Deep Parameter Optimisation for Face Detection /

= Using the Viola-Jones Algorithm in OpenCV

Bobby R. Bruce!™), Jonathan M. Aitken?(®), and Justyna Petke!(™%)

Not A Face

line_ 1 a 1°- N

To a genotype | 1 22 5 2

Integer

Literals line_ 1 b 22
extracted
line_10_a 5
line 12 a 2 Multi-objective

optimisation

Deep Parameter Optimisation for Face Detection /

= Using the Viola-Jones Algorithm in OpenCV

Bobby R. Bruce!™), Jonathan M. Aitken?(®), and Justyna Petke!(™%)

Original: 191s, 1.04% inaccuracy

99s (48% decrease), 1.8% inaccuracy
68s (64% decrease), 5.4% inaccuracy
46s (76% decrease), 15.4% inaccuracy

Not A Face

150 200
1 1

line_ 1 a 1°- N

To a genotype | 1 22 5 2

Time (s)
100
1
OOa

Integer

Literals line_ 1 b 22 .
extracted o 0
line_10_a 5 \0\0\050\0
line 12 a 2 Multi-objective o

optimisation : o 2 0 “ 0

Incorrect Classification (%)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 3, JUNE 2018 415

Genetic Improvement of Software:
A Comprehensive Survey

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, Member, IEEE, William B. Langdon,
David R. White, and John R. Woodward

Abstract—Genetic improvement (GI) uses automated search to
find improved versions of existing software. We present a com-
prehensive survey of this nascent field of research with a focus
on the core papers in the area published between 1995 and 2015.
We identified core publications including empirical studies, 96 %
of which use evolutionary algorithms (genetic programming in
particular). Although we can trace the foundations of GI back
to the origins of computer science itself, our analysis reveals a
significant upsurge in activity since 2012. GI has resulted in dra-
matic performance improvements for a diverse set of properties
such as execution time, energy and memory consumption, as well
as results for fixing and extending existing system functionality.
Moreover, we present examples of research work that lies on the
boundary between GI and other areas, such as program trans-
formation, approximate computing, and software repair, with

the intention of encouraging further exchange of ideas between
nnnnnnn , MDD ISR PRpRpReS | PIN N [

Recent work on GI has received notable awards, demon-
strating its acceptance and success within the wider software
engineering and evolutionary computation communities. For
example, work on GI for software repair and special-
ization won four “Humies” [1]-[5], awarded for human-
competitive results produced by genetic and evolutionary
computation [6]. Several papers on GI also won distinguished
paper awards [1], [5] and technical challenges [7]. GI has also
been the subject of attention from the broadcast media, as well
as popular developer magazines, websites, and blogs [8]-[11],
demonstrating its influence and reach beyond the research
community to the wider developer community and the public
at large.

This survey of 3132 distinct titles found. resulted in the

Phd Theses

David R. White

Andrea Arcuri

Bobby R. Bruce
Seemundur O. Haraldsson
Mahmoud R. Bokhari
And many more to come...

—Relationship to other fields

® Optimization/machine learning - OVERFITTING (or: specialisation?)
(“Is the cure worse than the disease?” Smith et al. FSE 2015)

® Genetic Programming and Metaheuristics

e the automatic design of algorithms

® Automatic parameter tuning/deep parameter tuning/GI

Genetic Genetic
Improvement Programming

AutoLatic Deep Automatic
Parameter Parameter Design of
Tuning Tuning Algorithms

e

G

= Scientific

| &

18 1 o A O O -

Benchmarking e E
. A
1. GP suffered a “midlife crisis” .
2. Toy problem e.g. lawnmower « > o -
3. Genetic Programming Needs Better Benchmarks [White et al.]
4. Machine Learning that Matter [Wagstaff 2012] what is 1% meaning
5. Is Software Engineering the best benchmark for GP?
6. Do we have a stable set of benchmarks for GI?
(for program repair: http://program-repair.org/benchmarks.html)
7. Benchmarking is more complex (noise, hardware, prog lang, ...)

http://program-repair.org/benchmarks.html

~—Measuring Energy

e computational energy consumption
growing importance, particularly at the
extremes (i.e., mobile devices and
datacentres).

one line = one unit

simulate (runtime/system calls/) Tools Opacitor,
PowerGauge

read battery indicator

physically measure and validate(e.g. see Bokhari
et al.)

, Deep Parameter Optimisation on Android Smartphones for
GIeGECCO’'17 Energy Minimisation - A Tale of Woe and a Proof-of-Concept

CEC 2019 Mind the gap - a distributed framework for enabling energy optimisation on modern
smart-phones in the presence of noise, drift, and statistical insignificance [#19776]

/

_—
Measuring Energy

Trade-offs to exploit, but lots of noise and many confounding factors

Exploring the Accuracy — Energy Trade-off in

Machine Learning Towards Rigorous Validation of Energy Optimisation

Alexander E.I Brownlee, Jason Adair, Saemundur O. Haraldsson and John Jabbo Expe riments
7
GI@ICSE 21300 . Mahmoud A. Bokhari Brad Alexander, Markus Wagner
GECCO 20

Rebound Library Energy Use

7507 14 14

13

4
250 - 811
S
10
0-

0.4 05 0.6 07 0.8
Accuracy on test set

CPU Energy (Joules)
8
o

84

= Gl@GEECO 2020 Q

Gl @ ICSE 2020

Software®ptimisation An International Workshop on the Repair and
Optimisation of Software using Computational Search

GENETIC International Workshop on Automatic
PROGRAMMING

AND EVOLVABLE
MACHINES International Workshop.on Automatic Software

Ninth Gl Workshop, 2020,(now running online!)

aCtiVities Optimisation

Seventh edition-of Gl @ GECCO 2019 in Prague, Czech Republic
Editor-in-Chief:
Lee Spector

Founding EdHor The 6th International Workshop on Genetic Improvement @ICSE
FORPU S 2019

The 62nd CREST Open Workshop - Automated
4 Program Repair and Genetic Improvement

Date: 20th and 21st January 2020

Venue: George Fox room Friends House, 173-177 Euston
Road, London, NW1 2BJ

We are proud to announce the Second International Summer School on Search-Based
e Engineering (SS-SBSE 2017).

January 2018
SCHLOSS DAGSTUHL

Leibniz-Zentrum fiir Informatik

video

_—

/Growth of papers

T » Non-EC venue

05 m EC venue
20 -
15

10

SOURCE CODE
e Tt B WILL ALWAYS
= RS BE IMPORTANT

e
~—Source of Genetic Material

1. the program being improved,

2 . a different program Writtel’l in the same J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic

improvement and code transplants to specialise a C++ program to a

language (Petke: MiniSAT competition), — LiRes™ S "Sprnee 2014 . 137180
3. apiece of code generated from scratch (GP),

4. different programming language other than the
software to be improved.

~—Theory

« Hard!

« NFL not really valid for GP, and therefore GI.
« Why - because many programs share same functionality.

=> GI will remain empirical for years to come

BREAKDOWN—
papers by application

W repair
W runtime
W parallelisation
W energy consumption
® new functionality
wslimming
memory consumption
specialisation

ming

® A grant about GP
(0%)

VS

® A grant about GIL
(100%)

/
e SiTeS Genetic Improvement Workshop

An International Workshop on the Repair and Optimisation of Software using Computational Search

® http://geneticimprovementotsottware.com/

® https://en.wikipedia.org/wiki/Genetic_ improvement (com
puter science)

e http://daase.cs.ucl.ac.uk/ CREST

® http://crest.cs.ucl.ac.uk/publications/ NN
® https://clairelegoues.com/blog/

e https://cs.adelaide.edu.au/~optlog/research/software.php

http://geneticimprovementofsoftware.com/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.davidrwhite.co.uk/
http://daase.cs.ucl.ac.uk/
http://crest.cs.ucl.ac.uk/publications/
https://clairelegoues.com/blog/
https://cs.adelaide.edu.au/~optlog/research/software.php

arfing point — POP science, GIN, Survey

TEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Genetic Improvement of Software:
a Comprehensive Survey

Justyna Petke, Saemundur O. Haraldsson, Mark Harman,
William B. Langdon, David R. White, and John R. Woodward

(2017)

A Survey of Genetic Improvement Search Spaces

GIeGECCQO’19 Justyna Petke Brad Alexander Earl T. Barr
Department of Computer Science School of Computer Science Department of Computer Science
University College London University of Adelaide University College London
London, UK Adelaide, Australia London, UK
j.petke@ucl.ac.uk brad@cs.adelaide.edu.au e.barr@ucl.ac.uk
Alexander E.I. Brownlee Markus Wagner David R. White
Computing Science and Mathematics School of Computer Science Department of Computer Science
University of Stirling University of Adelaide The University of Sheffield
Stirling, UK Adelaide, Australia Sheffield, UK

sbr@cs.stir.ac.uk markus.wagner@adelaide.edu.au d.r.white@sheffield.ac.uk

e —

Overview

® Introduction

e Fixing Bugs and other examples

e Noteworthy papers and issues

e Summary and Q&A

93

Glin No Time —

/ David R. White
G e -|- i n V O V e d WI -|- h dav?(i(.:f\’wll;(i)tr::d(;z;l[.]:z.uk

(Inaugural paper at

Gl in NO ime - or GlN GI@GECCO 2017)

Available at
https:/ /github.com /gintool/gin

v2.0 published in June 2019
“Gin: Genetic Improvement Research
http://www.davidrwhite.co.uk/ Made Easy” (GECCO 2019)

https://github.com/gintool/gin

Th

|

ul\.Al

official V2.1 released on 7 Iv\arch 2023:
hitps.//qQithub.com/gintool/din/releases

Gin: Genetic Improvement Research Made Easy

Alexander E.I. Brownlee
Computing Science and Mathematics
University of Stirling
Stirling., UK
sbr@cs.stir.ac.uk

Earl T. Barr
Department of Computer Science
University College London
London, UK
e.barr@ucl.ac.uk

ABSTRACT

Genetic improvement (GI) is a young field of research on the cusp
of transforming software development. GI uses search to improve
existing software. Researchers have already shown that GI can
improve human-written code, ranging from program repair to opti-
mising run-time, from reducing energy-consumption to the trans-
plantation of new functionality. Much remains to be done. The cost
of re-implementing GI to investigate new approaches is hindering
progress. Therefore, we present Gm an exten51ble and modlﬁable

Justyna Petke
Department of Computer Science
University College London
London, UK
j.petke@ucl.ac.uk

Markus Wagner
School of Computer Science
University of Adelaide
Adelaide, Australia
markus.wagner@adelaide.edu.au

Brad Alexander
School of Computer Science
University of Adelaide
Adelaide, Australia
brad@cs.adelaide.edu.au

David R. White
Department of Computer Science
The University of Sheffield
Sheffield, UK
d.r.white@sheffield.ac.uk

1 INTRODUCTION

Genetic improvement (GI) is a young field of software engineering
research that uses search to improve existing software. GI aims to
improve both functional, notably bug fixing, and non-functional
properties of software, such as runtime or energy consumption.
The intersection of automated program repair (APR) and GI has had
the greatest impact to date, from the release of the GI-based tool
GenProg [27] to successful integration of APR into commercial de-
velopment processes [19, 20]. Non-functional improvement (NFI) is

https://github.com/gintool/gin/releases

Bradley Alexander

Justyna Petke

e
Markus Wagner

Also uses GIN in teaching since 2017
https://tinyurl.com/giassignment

R ——

Sandy Brownlee

David R. White

https://tinyurl.com/giassignment

“Stupidly simple”

GIN EC]

https://cs.gmu.edu/~eclab/projects/ecj/

https://cs.gmu.edu/~eclab/projects/ecj/

enefic Improvement

® Many success stories
e ...however, these typically need at GI expert in the loop
® What’'s needed is a more systematic approach

e A toolkit to enable experimentation

—Gin's Goals

® Remove incidental difficulties of GI for research and teaching
® Enable focus on general questions

® Provide a central tool for the community

® Support more than bug-fixing: non-functional properties

e Work on open-source software projects out-of-the-box

~—Gin Design

Maven

g Gradle Build Tool

JAVAPARSER

FOR PROCESSING JAVA CODE

G((N
=" Apache Commons @
GUAVA

Java Libraries License

What's In Gin¢

Implementations of edits for source code

Evaluate edits: compile and run JUnit tests

Searches and Samplers

Test generation (EvoSuite)

Profiler to identify hot methods (hprof, Java Flight Recorder)
Build tool integration (Maven, Gradle)

Let’s see those in more detail...

101

/

m GIN: Neighbourhood search

Converted to Optlmlsed
rce-code >
|
Yes
No

Apply Patch

JUnit Test Cases

B Better than before? 4G m
No

/

~—Gin Pipelines

Preprocessing
(Project Source } — EvoSuite — [Generated Test Suite] [Target Methods]
— | Test Suite Profiling | —
Project Test Suite] [Method Tests
Search Space Analysis
[Target Method J
E—— Patch Sampling — | Dynamic Compilation | — jUnit — { Patch Profile]

[Method Tests]

IS

e Edits are single changes to source code
e Building blocks of a repair
e Combined into Patches
e Question: actually, what scale might an edit be?

e Gin supports edits at:
e line level (Langdon) - delete/replace/copy/swap/move
e statement level (GenProg) - delete/replace/copy/swap/move
e constrained (matched) statement - replace/swap
® micro edits
e binary & unary operator replacement (OR <=>AND) (++ <= --)
e reorder Boolean expressions (X && Y <= Y && X)
e loop and method shortcuts (insert return/break/continue)

—Edits

® We provide many wrappers to make your life easier, so that you can
focus on higher-level tasks:

® “Tell me which lines are eligible for deletion in this method”
® “Delete this line”
® “Give me all the for loop conditions in this method”

® And many more...

—Example edits

1 public class ReplaceStatement extends StatementEdit {

2

3 public int sourcelD;

4 public int destinationID;

5

6 public ReplaceStatement(SourceFileTree sf, Random r) {

7 sourcelD = sf.getRandomStatementID(false, r);

8 destinationID = sf.getRandomStatementID(true, r);

9 ¥

10

11 public SourceFile apply(SourceFileTree sf) {

12 Statement source = sf.getStatement(sourcelD);

13 Statement dest = sf.getStatement(destinationID);

14 return sf.replaceNode(dest, source.clone());))))

15 3 Dlsclalrpgr: th}s was an old version.
15 Today, it is a little bit 1(?nger, e.g., to
17 3 prevent us from replacing statements

within the same parent node.

——Example edits

1 public class MatchedReplaceStatement extends
ReplaceStatement {
public MatchedReplaceStatement(SourceFileTree sf,
Random r) {

super(9, 9);
destinationID = sf.getRandomStatementID(true, r);
sourcelID = sf.getRandomNodeID(false,
st.getStatement(destinationID).getClass(), r);

OO0 1 N e WD

—Patch Evaluation

Gin invokes test .
cases via]U.nlt new UnitTest ("TriangleTe st ", "test

new UnitTest ("Triangle
and traCkS: new UnitTest("TriangleTest"

new UnitTest ("TriangleTest"

- N s s

® compile success; "’

UnitTest.defaultTimeoutMsS = 10000:

® run-time errors, int reps = 1;
exceptlon typeS SourceFileTree sf = new SourceFileTree ("examr ’
Collections.singletonList("classi
o
aCtual & InternalTestRunner tr = new InternalTestRunner ("TriangleTest”,
eXpeCted "examples/triangle", Arrays.aslList(ut)):
outcomes // Start with the empty patch

Patch patch = new Patch(sf):

® timing: R R
// Run empty patch and log
Wall_C OCk and UnitTestResultSet rs = tr.runTests(patch, reps):
CPU tlme; peak boolean compiled = rs.getCleanCompile():

boolean testO0TimedOut = rs.getResults().get(0).getTimedOut()
memory long testOExecutionTime = rs.getResults().get(0).getExecutionTime () ;
String testOExceptionMessage = rs.getResults().get(0).getExceptionMessage():

%ﬁw@ﬁ\video ealring.
ere: Gin Compiles and Reloads
on-the-fly

public class Frame {
S Appl
Ciip —
' Note: If you prefer to use
l the more “traditional”
way of writing the file to
/) disk first - e.g., due to
Frame Dynamic integration of Gin into
Sompl ation other pipelines - then you
can use a command-line
l flag to do so.
Original System Gin Classloader

Classloader

DeleteEnumerator /

public static void main(String[] args) {

/ngﬁﬁﬁgﬂhd\
UnitTest[] ut = {

1
2
e 3
4 new UnitTest("TriangleTest","testInvalidTriangles"),
Searchin)
6 }
7
8

int reps = 1;

e Included samplers: 9
10 SourceFileTree sf = new SourceFileTree(
o EmptyPatChTeSter i) "examples/simple/Triangle. java",
12 Collections.singletonList(
() RandomSampler 13 "classifyTriangle(int,int,int)"));
14
[DeleteEnumerator 15 TestRunner tr = new TestRunner(
16 new File("examples/simple"), "Triangle",
o Searches: LOCaISearCh, GP’ NSGA-II 17 "examples/simple", Arrays.asList(ut));
18

19 // Start with the empty patch
20 Patch patch = new Patch(sf);
21

o POSSible QueStionS: 22 // Run empty patch and log
. . 23 UnitTestResultSet rs = tr.test(patch, reps);
[] What 1S the ef‘feCtlvel’leSS Of a 24 writeResults(rs, @);
given edlt type for ﬁXlng a sz int patchCount = @;
Category Of bug? 27 for (int id : sf.getStatementIDsInTargetMethod()) {
. 28 patchCount++;
e How robust is the space of 20 patch = new Patch(sf); | ,
. . . 30 patch.add(new DeleteStatement(sf.getFilename(),id));
single-line edits, modulo the 31
. . 32 rs = tr.test(patch, reps);
glven teSt Sulte? 33 writeResults(rs, patchCount);
° 34}

35,0

ampling

The following is one really wide output file - here of RandomSampler:

Patchindex PatchSize Patch

1
2
3

1 | gin.edit.statement.SwapStatement ./src/main/java/org/jcodec/codecs/vpx/VPXBitstream.java:752 <->./src/main/java/org/jcodec/codecs/vpx/VPXBitstream.java:884 |
1 | gin.edit.statement.ReplaceStatement ./src/main/java/org/jcodec/codecs/prores/ProresEncoder.java:2310 -> ./src/main/java/org/jcodec/codecs/prores/ProresEncoder.java: 1185 |
1 | gin.edit.statement.CopyStatement ./src/main/java/org/jcodec/containers/mp4/boxes/Box.java:514 -> ./src/main/java/org/jcodec/containers/mp4/boxes/Box.java:110:110 |

TestTimedOut TestExceptionType

FALSE java.lang.AssertionError
FALSE N/A

FALSE N/A

N/A
N/A

MethodIndex Testindex UnitTest

152
189
184

1 org.jcodec.codecs.vpx.TestCoeffEncoder.testCoeffDCTU []
1 org.jcodec.codecs.prores.ProresEncoderTest.testWholeThing []
1 org.jcodec.containers.mp4.boxes.TrunBoxTest.testReadWriteCreate []

TestExceptionMessage
expected:<255> but was:<207> 255

AssertionExpectedValue AssertionActualValue

207
N/A N/A
N/A N/A

RepNumber PatchValid PatchCompiled TestPassed TestExecutionTime(ns) TestCPUTime(ns)

0 TRUE TRUE FALSE 2853708 1535633
0 TRUE FALSE FALSE 0 0
0 TRUE FALSE FALSE 0 0

—tLocal search

1 private Patch search() {

2
3

IS

[T B N |

10
11
12
13
14
15
16
17
18 3}
19

// start with the empty patch

Patch bestPatch = new Patch(sourceFile);

long bestTime = testRunner.test(bestPatch, 10).
totalExecutionTime();

for (int step = 1; step <= NUM_STEPS; step++) {
Patch neighbour = neighbour(bestPatch, rng);
UnitTestResultSet rs = testRunner.test(neighbour
,10);
if (rs.getValidPatch() && rs.getCleanCompile() &&
rs.allTestsSuccessful () &&
rs.totalExecutionTime() < bestTime) {
bestPatch = neighbour;
bestTime = rs.totalExecutionTime();

}

return bestPatch;

20 public Patch neighbour(Patch patch, Random rng) {

21
22
23
24
25
26
27
o8
29
30 }

Patch neighbour = patch.clone();

if (neighbour.size() > 0 && rng.nextFloat() > ©0.5) {
neighbour.remove(rng.nextInt(neighbour.size()));
} else {
neighbour.addRandomEdit(rng, allowableEditTypes);

return neighbour;

—

ocal search, outpur

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

~—tocal search, outpuf

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest () WARNING: Possible hanging threads remain after test

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns

~—tocal search, outpuf

-bash-4.1$
2020-04-10
2020-04-10
2020-04-10
2020-04-10

java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle (int, int, int)"
INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)

04:36:41 gin
04:36:44 gin
04:36:59 gin
04:36:59 gin

|, Failed to compile

.LocalSearch.search ()

.test.InternalTestRunner.runSingleTest ()

.LocalSearch.search ()
.LocalSearch.search ()

WARNING: Possible hanging threads remain after test

INFO: Original execution time: 1646971219ns

INFO:

Step:

1,

Patch:

gin.edit.line.Replaceline examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23

—TLocal search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)

2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest () WARNING: Possible hanging threads remain after test

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.Replaceline examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:36 |, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:19 |, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:2&afiled to pass all tests

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.Replaceline examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:3¢
|, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:17 |, Failed to compile

2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopylLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,

Failed to compile

2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest WARNING: Possible hanging threads remain after test

2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest () WARNING: Possible hanging threads remain after test

2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.Swapline examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10
Failed to pass all tests

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile

2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns

2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile

2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns

2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892 (ns)

—TLocal search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)

2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest () WARNING: Possible hanging threads remain after test

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.Replaceline examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:36 |, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:19 |, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:2&afiled to pass all tests

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.Replaceline examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:3¢
|, Failed to compile

2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:17 |, Failed to compile

2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopylLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,

Failed to compile

2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest WARNING: Possible hanging threads remain after test

2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest () WARNING: Possible hanging threads remain after test

2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.Swapline examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10
Failed to pass all tests

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile

2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns

2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.Deleteline examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile

2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns

2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeletelLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892 (ns)
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Finished. Best time: 38744892 (ns), Speedup (%): 97.64, Patch: | gin.edit.line.Deleteline

examples/triangle/Triangle.java:10 |

Local search

?

her

imise

What did we actually opt

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a,
delay()

// Sort the sides so that a <= b <= ¢
if (a > b) {

int tmp = a;

a = b;

b = tmp;

}

if (a > c) |
int tmp = a;

c = tmp;
}

if (b > c) |
int tmp = b;
b =c;

c = tmp;

}

if (a + b <= ¢) {

return INVALID;

} else if (a == b && b == ¢c) {
return EQUALATERAL;

} else if (a == [l b==2c) {
return ISOCELES;

} else {

return SCALENE;

}

private static void delay() {

try {

Thread.sleep(100);

} catch (InterruptedException e) {

int b,

int c)

{

The
problematic
line was

deleted.

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

.optimised

public static int classifyTriangle(int a, int b, int c)

// Sort the sides so that a <= b <= ¢

if (a > b) {
int tmp = a;
a = b;

b = tmp;

}

if (a > c
int tmp = a;
a = c;

c = tmp;

}

if (b > c) {
int tmp = b;
b = c;

c = tmp;

}

if (a + b <= ¢c) {
return INVALID;

} else if (a == b && b == ¢c) {
return EQUALATERAL;

} else if (a == |l b ==1c) {
return ISOCELES;

} else {

return SCALENE;
}

private static void delay() {

try {

Thread.sleep (100) ;

} catch (InterruptedException e) {

Mr\g tests and Profiling

Generate new test cases

java -cp build/gin.jar gin.util.TestCaseGenerator
-projectDir examples/maven-simple -projectName my-app
—classNames com.mycompany.app.App -generateTests

Profile a test suite
java -cp build/gin.jar gin.util.Profiler -p my-app
-d examples/maven-simple/ .

Results written to profiler_output.csv.

—Build tool infegration

® Maven and Gradle API documentation is sparse!
¢ And many projects seem to break conventions about paths, resources etc.

e Project class wraps most of what we have learned
e provide the classpath for a project
e find a particular source file within a project’s file hierarchy
e provide a standard method signature for a given method
e provide a list of project tests
® run a unit test given its name

¢ Gin can infer the necessary classpath and dependencies for running
unit tests from a Maven or Gradle project, or these can be specified
manually

® Maven projects can be updated automatically with new unit tests
from EvoSuite

project)

projectnameforgin="'jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d
-0 $projectnameforgin.Profiler_output.csv -r 1

project)

projectnameforgin="'jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-0 $projectnameforgin.Profiler_output.csv -r 1

project)
e Profiler
projectnameforgin="jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-0 $projectnameforgin.Profiler_output.csv -r 1

e EmptyPatchTester
projectnameforgin="jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/éin.jar gin.util.EmptyPatchTester -h
~/ .sdkman/candidates/maven/current/ -p $projectnameforgin -d .

-m $projectnameforgin.Profiler_output.csv

-0 $projectnameforgin.EmptyPatchTester_output.csv

poroject)
e Profiler
projectnameforgin="jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-0 $projectnameforgin.Profiler_output.csv -r 1

e EmptyPatchTester
projectnameforgin="jcodec’;

java —Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/ .sdkman/candidates/maven/current/ -p $projectnameforgin -d .

-m $projectnameforgin.Profiler_output.csv

-0 $projectnameforgin.EmptyPatchTester_output.csv

e PatchSampler
projectnameforgin="jcodec’;

java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.PatchSampler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .

-m $projectnameforgin.Profiler_output.csv

-0 $projectnameforgin.PatchSampler_LINE_output.csv -editType LINE -patchNo 100

Gin: Genetic Improvement Research Made Easy

Alexander E.I. Brownlee Justyna Petke Brad Alexander
Computing Science and Mathematics Department of Computer Science School of Computer Science
University of Stirling University College London University of Adelaide
Stirling, UK London, UK Adelaide, Australia _—
sbr@cs.stir.ac.uk j-petke@ucl.ac.uk brad@cs.adelaide.edu.au
I I I Earl T. Barr Markus Wagner David R. White
Department of Computer Science School of Computer Science Department of Computer Science
University College London University of Adelaide The University of Sheffield
London, UK Adelaide, Australia Sheffield, UK
e.barr@ucl.ac.uk markus.wagner@adelaide.edu.au d.r.white@sheffield.ac.uk

® Available at https://¢ithub.com/gintool/ein

® The team actively uses Gin to push
the GI boundaries, and quite a few
papers are in the works.

® Open for contributions!
e Particularly new edits and tools
e https://github.com/gintool/gin

e we'd like this to become the MiniSAT of GI

© Watch = 11 * Star | 22 YFork 7

Exploiting Fault Localisation for Efficient Program Repair

Vesna Nowack David Bowes Steve Counsell
Queen Mary University of London Lancaster University Brunel University
v.nowack@qmul.ac.uk d.h.bowes@lancaster.ac.uk steve.counsell@brunel.ac.uk
Tracy Hall Saemundur Haraldsson Emily Winter
Lancaster University Stirling University Lancaster University
tracy.hall@l. ac.uk durharald: irac.uk e.winter@l: ster.ac.uk
John Woodward

Queen Mary University of London
j-woodward@gmul.ac.uk

Injecting Shortcuts for Faster Running Java Code

Alexander E.I. Brownlee Justyna Petke Anna F. Rasburn
Computing Science and Matl Dey of Computer Science Computing Science and Mathematics
University of Stirling University College London University of Stirling
Scotland, UK London, UK Scotland, UK

sbr@cs.stir.ac.uk j.petke@ucl.ac.uk

Analysing Program Transformation Spaces

for Genetic Improvement using Gin

Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E.I. Brownlee, Markus Wagner, David R.White

Software Improvement with Gin:
A Case Study

! University College London, London, UK
j.petke@ucl.ac.uk
2 University of Stirling, Stirling, UK
sbr@cs.stir.ac.uk

Comments/questions: Sandy (Alexander E.I. Brownlee) sbr@cs.stir.ac.uk

https://github.com/gintool/gin
https://github.com/gintool/gin
mailto:sbr@cs.stir.ac.uk

Search spaces and targeting

e Recent study using Gin
e We looked at 10 open source projects
e arthas, disruptor, druid, gson, jcodec, junit4, mybatis-3, opennlp,
apache spark, spatial4j
e Applied 1M patches to these
o Copy/Delete/Replace/Swap
e 10k each of 1-5 edits
e Line and Statement

e Profiled (using Gin HPROF)
Measured compile/test pass rates (Using Gin RandomSampler)

126

Line Statement
Delete 16.5% Delete 30.2%
Swap 5.6% Swap 23.6%
Copy 4.6% Copy 11.6%

Replace 1.7%

Replace 9.6%

127

e —

Single test-passing edit type distribution for operators: LINE

100%

80% A

60% -

40%

20% A

0% -

Il Test-passing Copy
I Test-passing Delete
Bl Test-passing Replace
Bl Test-passing Swap

100%

Line edits generate Y3 as many test passing variants as statement

Single test-passing edit type distribution for operators: STATEMENT

80% A

60% -

40% A

20% -

B Test-passing Copy
B Test-passing Delete
I Test-passing Replace
BN Test-passing Swap

0% -

& SR
& N &

128

/ /

Big hurdle is compilation: rates drop 50% with each additional edit for
line, and 25% for statement. Of compiling variants, drop in test-pass
rate less severe

Patches For All Projects Patches For All Projects
100% 100%
EditCount EditCount
-1 -1
2 . 2
80% - 3 80% | - 3
- 4 - 4
-u 5 - 5
£
60% < 60%
o o
y: g
3]
8 2
40% £ 0%
i
=z
20% 20% -
LINE STATEMENT LINE STATEMENT

129

546 Genetic Programming and Evolvable Machines (2019) 20:531-580

mm

Targeting

Still learning where and when GI
works well

Genetic Programming and Evolvable Machines (2019) 20:531-580
https://doi.org/10.1007/s10710-019-09355-3

0.2

DELETE Neutral Variant Rate

Check for 0.1
| updates
A journey among Java neutral program variants
Nicolas Harrand - Simon Allier? - Marcelino Rodriguez-Cancio® -
Martin Monperrus' - Benoit Baudry'® 0.0
Assiglnement If Invo;:ation Lc;op Re{um Thlrow
Received: 18 December 2018 / Revised: 22 May 2019 / Published online: 25 June 2019 Location Node Type
© The Author(s) 2019
. commons-codec . commons—io . gson . average
. commons~-collections . commons-lang . joit
Abstract

. . . 5 g Fig.7 Neutral variant rate of transfc tion in functi fthe t f the locati
Neutral program variants are alternative implementations of a program, yet equivalent 9.4 Denmvarianfie of pREETE ansiormation snzmactioniof (e type.of the “oeation

with respect to the test suite. Techniques such as approximate computing or genetic

Semnenearramanahdloss Ao lniilon: ok nobnntiol Eammnlhanannaande:linndniloona:enncelaala 130

Targeting

Still learning where and when GI
works well

Lots of open questions here:

e Good edits
e What to target them?
e Landscapes...

131

/ /
Overview

® Introduction

e Fixing Bugs and other examples
e Noteworthy papers and issues

e Getting involved

132

/G@@TWWW

VS
Genetic Programming

Start from an existing program
BLOAT? — interpretation?

NO function / terminal set

Improvement of non-functional properties.
Easier to write grants

Different benchmarks.

N o Uk W E

Population of edits NOT programs.

TING IT ALL TOGETHEF//

® Let’s start with existing programs. Not like standard GP.
® Python vs C vs Java? Amenable to GI? Most popular

® Benchmarking ???

® Population of edits, not programs

e GP applied to real software
e Large, loops, side-effect, modules,...
e Non functional properties

e Open Question: where do humans fit in?

Gl Workshop

The 12th International Workshop on Genetic Improvement
@ICSE 2023

Held on 20 May

Keynotes from Myra B. Cohen and Sebastian Baltes

6 accepted papers

Future workshops http://geneticimprovementofsoftware.com

135

https://gecco-2022.sigevo.org/HomePage
http://geneticimprovementofsoftware.com

/

~—— Questions?

Scemundur (Saemi) Haraldsson <soh@cs.stir.ac.uk>

John Woodward <j.woodward@gmul.ac.uk>

Alexander (Sandy) Brownlee <alexander.brownlee@stir.ac.uk>

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI tutorial GECCO 2023.pdf

136

mailto:soh@cs.stir.ac.uk
mailto:j.woodward@qmul.ac.uk
mailto:alexander.brownlee@stir.ac.uk
https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf

Bibliography

S.0. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. |. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.0. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S.0. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI:
https://doi.org/10.1145/3067695.3082526

S.0. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V. Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE Symposium
on Computers and Communications (ISCC), Heraklion, 2017, pp. 242-247. DOI: htips://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K. Siggeirsdottir, "Predicting changes in quality of life for patients in vocational rehabilitation," 2018 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), Rhodes, 2018, pp. 1-8. DOI: hitps://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson, E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016. Determinants of
outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI: https://10.3233/WOR-162436

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., & Woodward, J. R. (2017). Genetic improvement of software: a comprehensive survey. IEEE Transactions
on Evolutionary Computation, 22(3), 415-432. DOI: 10.1109/TEVC.2017.2693219

137

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

J. Petke, B. Alexander, E.T. Barr, A.E.l. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.l. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: htips://doi.ora/10.1145/3321707.3321841

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’.
In Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA,
207-215. DOI: https://doi.org/10.1145/3286978.3287014

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.ora/abs/2004.04500v 1

M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a
proof-of-concept’. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL:
https://doi.org/10.1145/3067695.3082519

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap — a distributed framework for enabling energy optimisation on modern smart-phones in the presence of
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:
https://doi.org/10.1109/CEC.2019.8790246

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software
Engineering, Springer. Published 22 April 2020. DOI: htips://doi.org/10.1007/s10664-020-09808-9

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341-352. DOI: https://doi.ora/10.1145/3196398.3196442

E. R. Winter et al., "Let's Talk With Developers, Not About Developers: A Review of Automatic Program Repair Research," in IEEE Transactions on Software Engineering, doi:
https://10.1109/TSE.2022.3152089

V. Nowack et al., "Expanding Fix Patterns to Enable Automatic Program Repair," 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), 2021, pp.
12-23, doi: https://10.1109/ISSRE52982.2021.00015 .

138

https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3286978.3287014
https://arxiv.org/abs/2004.04500v1
https://doi.org/10.1145/3067695.3082519
https://doi.org/10.1109/CEC.2019.8790246
https://doi.org/10.1007/s10664-020-09808-9
https://doi.org/10.1145/3196398.3196442

