
Genetic Improvement: Taking real-world
source code and improving it using

computational search methods
Sæmundur Ó. Haraldsson, John R. Woodward, Alexander Brownlee

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf

GECCO 2023

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3595044

This work is licensed under a Creative Commons
Attribution International 4.0 License.

http://creativecommons.org/licenses/by/4.0/

https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf
http://creativecommons.org/licenses/by/4.0/

● Saemundur O. Haraldsson is a Lecturer at the University of Stirling. He co-organised
every version of this tutorial. He has multiple publications on Genetic Improvement,
including two that have received best paper awards. Additionally, he co-authored the
first comprehensive survey on GI 1 which was published in 2017. He has been invited
to give talks on the subject in two Crest Open Workshops and for an industrial
audience in Iceland. His PhD thesis (submitted in May 2017) details his work on the
world's first live GI integration in an industrial application.

● Alexander (Sandy) Brownlee is a Senior Lecturer in the Division of Computing Science
and Mathematics at the University of Stirling. His main topics of interest are in
search-based optimisation methods and machine learning, with applications in civil
engineering, transportation and SBSE. Within SBSE, he is interested in automated
bug-fixing and improvement of non-functional properties such as run-time and energy
consumption; how these different objectives interact with each other; and novel
approaches to mutating code. He is also one of the developers of Gin, an open-source
toolkit for experimentation with Genetic Improvement on real-world software projects.

Instructors

● John R. Woodward is Head of Department at Loughborough University. Previously he was
Head of The Operational Research Group at the Queen Mary University of London. Formerly
he was a lecturer at the University of Stirling, and was employed on the DAASE project
(http://daase.cs.ucl.ac.uk/). Before that he was a lecturer for four years at the University of
Nottingham. He holds a BSc in Theoretical Physics, an MSc in Cognitive Science and a PhD in
Computer Science, all from the University of Birmingham. His research interests include
Automated Software Engineering, particularly Search Based Software Engineering, Artificial
Intelligence/Machine Learning and in particular Genetic Programming. He has over 50
publications in Computer Science, Operations Research and Engineering which include both
theoretical and empirical contributions, and given over 50 talks at International Conferences
and as an invited speaker at Universities. He has worked in industrial, military, educational
and academic settings, and been employed by EDS, CERN and RAF and three UK Universities.

Instructors

● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

Overview

4

Justyna Petke

There is nothing
correct about a flat
battery
(BILL LANGDON)

UNITS

LOGICAL
PHYSICAL

accuracy

Justyna Petke

What is Genetic Improvement

A wordy definition:
Genetic Improvement is the application of search-based
(typically evolutionary) techniques to modify software

with respect to some user-defined fitness measure.

It’s just GP - BUT starting
with a nearly complete

program
[Wolfgang Banzhaf]

What is Genetic Improvement

GI Improve
Functional
Properties

Improve
non-functional

properties

Automatic
Bug fixing

Feature
Transplantation

‘Grow
and

Graft’

Improve
energy

consumption

Improve
Execution

time
Auto-parallelisation

Improve
memory

consumption

Software
Slimming

Genetic Programming overview

9

mutation crossover

Genetic Programming: GI’s ROOTS
1. Aim – to discover new programs by telling the computer what we want it

to do, but not how we want it to do it – John Koza
2. How – we evolve computer programs using natural selection.
3. Starts from scratch (empty program)
4. Choose primitives (terminal set/FEATURES and function set)
5. Choose representation (tree based, graph based, linear e.g. CGP)
6. Choose fitness function, parameters, genetic operators.

GI forces “the full capabilities of
programming languages”- side
effects, ADFs, LOOPS

What about Copilot/ChatGPT…?
Large language models generate code!

Replicate patterns given some prompt

Can lead to errors!* Related-but-incorrect solutions

GI search tests the code as it goes, so can be constrained to only produce
variants that (probably) work

12*Jones E & Steinhardt J. Capturing failures of large language models via human cognitive biases. In AH Oh, A
Agarwal, D Belgrave & K Cho, eds., Advances in Neural Information Processing Systems. 2022

Popular Science
● easy to digest articles for non-specialists.

https://theconversation.com/computers-will-s
oon-be-able-to-fix-themselves-are-it-departm
ents-for-the-chop-85632

IT?

https://theconversation.com/how-computers
-are-learning-to-make-human-software-work-
more-efficiently-43798

http://www.davidrwhite.co.uk/2014/11/27/ge
netic-programming-has-gone-backwards/

http://www.davidrwhite.co.uk/tag/
genetic-programming/

Competent Programmers Hypothesis
1. programmers write programs that are almost perfect.

2. program faults are syntactically small (slip of finger, T/F)

3. corrected with a few keystrokes. (e.g. < for <=)

4. GI can find small patches.

5. Small changes are non-unique (write 7 lines code, or utter 7 words
before they’re unique)

Plastic Surgery Hypothesis.
the content of new code can often be assembled
out of fragments of code that already exist.

Barr et al. [71] showed that changes are 43% graftable from the exact
version of the software being changed.

The Plastic Surgery Hypothesis: Changes to a codebase contain snippets
that already exist in the codebase at the time of the change, and these
snippets can be efficiently found and exploited.
THE CODE CONTAINS SOLUTIONS – CANDIDATE PATCHES

Representations of PROGRAMS
Natural Representation of CODE

1. Text files e.g. Program.java is a text file. Saemi.
2. Abstract syntax tree (AST) – Genprog, Genofix.
3. Java byte code (also C binaries) [102]

4. Errors, compile, halting (Langdon - discard)

Objectives
● Functional (logical properties)

● Accuracy e.g. as in machine learning - FLOAT
● Number of bugs – as measured against a set of test cases. BOOLEAN
● New functionality – e.g.

● Non-functional (physical properties)
● Execution time
● Energy (power consumption – peak/average)
● Memory
● Bandwidth

● Multi-objective
● Trade-offs, convex, a set of programs = a single tuneable program

Multi-Objective
● Seems be convex
● – simple argument (see pic)
● Can provide a set of programs
● weighted sum of objectives?
● weight has meaning to user.
● Will there be elbow/knee points?

Slow connections….

GISMOE
The GISMOE challenge:
to create an automated program
development environment in
which the Pareto program surface
is automatically constructed to
support dialog with and decision
making by the software designer
concerning the trade offs present in
the solution space of programs for
a specific programming problem.

EDIT Operators – changes to programs
● Line level
● Single Character level
● Function/module level.
● AST – GIN, Gen-0-fix, genprog,
● Java – machine code – java byte code.

● LIST OF EDITS IS A PATCH.

GI: An example of execution time
optimisation

Start

delay() if a + b < c

INVALID if a == b and b
==c

EQUALATERAL if a==b or b==c

ISOCELES SCALINE

GI: An example of automated bug
fixing

Start

if a + b < c

INVALID if a == b and b
==c

ISOCELES if a==b or b==c

EQUALATERAL SCALINE

structure

Hill
climber

Neutral
networks
Graceful
degradation

System Diagram for Gen-O-Fix

John Woodward (Stirling)

Gen-O-Fix: Abstract Syntax Trees
Main features of framework are
1. Embedded adaptively.
2. Minimal end-user requirements.

1. Initial source code: location of Scala source code file
containing a function

2. Fitness function: providing a means of evaluating
the quality of system

3. Source to source transformations
4. Operates on ASTs (i.e. arbitrarily fine).

AST - scala

Gen-O-Fix output

John Woodward (Stirling)

GI Hashcode tuning
1. Hadoop provides a mapReduce

implementation in Java.
2. Equals method has to obey contract

(Reflective, Symmetric, Transitive, …)
3. x.equals(y) implies hashCode(x)==

hashCode(y).
4. hashCode method is an integer

function of a subset of an object's fields

Some GP Settings
1. Terminal set is

1. Field values
2. Random integers [0, 100]

2. Function set is
1. {+, *, XOR, AND}

3. Fitness function: close to uniform distribution of
hashes (uniform distribution is the ideal), over
10,000 instances.

Distribution of Hashcodes

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

38

Fixing Bugs and other examples

Saemundur O. Haraldsson
● Fixing bugs
● Making software faster

39

FIXIE Ref.:
EP/S005730/1

Fixing bugs
A real world example of GI in action

40

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin
Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an
overnight success. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test
Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires,
2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007

Janus Manager

● Management system
for rehabilitation

● Web application
○ Python source code
○ >25K LOC

● ~200 users
○ ~40 specialists
○ 150-160 patients

● In use since March
2016

● 60+ bugs
automatically fixed to
date

41

When last user logs out

1. Procedure 2.0
● Sorts and filters the

day’s exceptions

42

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

43

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and
structure.

● Produces test cases

44

45

Procedure 3.0

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and structure.

● Produces test cases
3. Procedure 4.0

● Genetic Improvement
● Parallel process on the

server
● Outputs report for

developer

46

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

47

48

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

4 different types of implemented Edits
Primitive types:

● Copy
● Equivalent to:

CTRL+C -> CTRL+V
● Delete

● Almost what you think

49

Composite types:
● Replace

● Copy + Delete
● Swap

● 2x Copy + 2x Delete

Copy

● CTRL+C => CTRL+V
● Applied to whole lines
● Some restrictions on what

lines can be copied
● Identified with regular

expressions

50

Delete

● Adds “#” to beginning of line
● “Comment”

● Applied to whole lines
● Some restrictions on what

lines can be commented out
● Identified with regular

expressions
● Can be reversed for

previously deleted lines
● “Uncomment”

51

Swap

● Copies both lines above each
other

● Then deletes the originals

● Applied to whole lines
● Like for like

52

Replace

● Copies one line above another
● Then deletes that line

53

Replace -- extra

● Deep parameter tuning

● Operator specific replacement
● and numbers too

● From a list of equivalent
operators.

54

A list of edits makes a suggestion

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

55

A list of edits makes a suggestion

56

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

57

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

58

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

A list of edits makes a suggestion

59

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

60

Summary

● Real-world example

● Catches inputs that
produce crashes

● Line(-ish) based GI
● 4 types of edits

● Overnight repair

● Developers are the
gatekeepers

Faster
Another example of GI in action

61

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V.
Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness
landscape in a bioinformatics application. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY,
USA, 1521-1528. DOI: https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

The software

62

ProbABEL
● A tool for Genome Wide

Association studies.

● Collection of functions for
regression models

● Written in C and C++

○ 8k LOC

○ 31 files

● Typical execution time
around 8-12 hours

http://www.genabel.org/packages/ProbABEL

30 Million SNPs
10 - 20k people

The GI setup

● Same as before

● Except for the
evaluation

● Mean CPU time from
20 executions

● None compiling and
failing variants are not
discarded

63

Results

64

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

Results

65

● 2 good variants found
early on

○ < a second faster

○ Generations 5 and 10

● Not statistically
significant on training
dataset

● Significant on a larger
dataset

○ Still, only about 1 sec
faster

Variant 1
Deletes a single line that
performs an expensive
matrix multiplication

Variant 2
Changes: i++ to ++i

66

Cost of running GI

Gained improvement per execution

Better predictions
And even more examples of GI in action

67

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V.
Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE
Symposium on Computers and Communications (ISCC), Heraklion, 2017, pp.
242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K.
Siggeirsdottir, "Predicting changes in quality of life for patients in vocational
rehabilitation," 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems
(EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson,
E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016.
Determinants of outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI:
https://10.3233/WOR-162436

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

http://hdl.handle.net/1893/26007

Dynamic updates to a prediction tool

● Used by Janus Rehabilitation
○ Since June 2016
○ Consulted in all team meetings

● Updated whenever there are new
information

○ No developer as gatekeeper

● Target software is the updating
script

○ Small python file

68

● Vocational rehabilitation outcome
○ Updated on every patient’s

discharge
○ Successful / Unsuccessful
○ Dropout
○ Length

● Next measurement of Icelandic
Health-related Quality of Life
(IQL)

○ Updated on every submission
of questionnaire

○ 12 categories
○ Measured every 3-6 months

69

The predictions

Predicting the outcome

70

Within 3 weeks

● Implemented in June 2016
○ Forgotten about for 10 months

● 72 updates over the 10 month
period

○ Reached maximum accuracy
early

● All predictions are for events that
had not occured.

○ Real people
○ Real events

● Simulation
○ Bootstrapped accuracy

distribution

● Never under 92% accuracy in any
IQL subcategory

● Mean accuracy over 99%

71

Predicting the IQL

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

72

Improving CUDA DNA Analysis Software with
Genetic Programming (2015)
W.B. Langdon , B.Y.H. Lam , J. Petke & M. Harman

1. DNA sequencing
2. consisting of 8,000+ lines

of code.
3. improved version is up to

3x faster
4. downloaded 1,000 times.
5. Ported by IBM to one of

their super computers

A 50,000 line
system

•Bowtie2, a DNA sequence
alignment/sequence analysis tool

•Using Genetic Improvement, Harman
and Langdon were capable of
increasing performance 70x.

Automatic Bug fixing — GenProg

Source
code

Converted to AST

Test cases

Spectrum-based
fault localisation
(e.g. LOC visited in

only a buggy case →
high weight)

Mutation
Operators:

Deletion
Replace

Copy

Fitness = number of
passed test cases

• Where an adequate test
suite is provided, GenProg
has been shown to fix
real-world bugs

• It has inspired a variety of
alternative frameworks,
most of which claim to
outperform GenProg

(2012)
Cited ~400 times

Featured in:

Donor Host

English to Korean;
English to Portuguese

(2015)

(2014)

muScalpel

Face
Detec
tion

Face

Not A Face

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Original: 191s, 1.04% inaccuracy
99s (48% decrease), 1.8% inaccuracy
68s (64% decrease), 5.4% inaccuracy
46s (76% decrease), 15.4% inaccuracy

79

● David R. White
● Andrea Arcuri
● Bobby R. Bruce
● Sæmundur Ó. Haraldsson
● Mahmoud R. Bokhari
● And many more to come...

Phd Theses

Relationship to other fields
● Optimization/machine learning - OVERFITTING (or: specialisation?)

(“Is the cure worse than the disease?” Smith et al. FSE 2015)
● Genetic Programming and Metaheuristics
● the automatic design of algorithms
● Automatic parameter tuning/deep parameter tuning/GI

Deep
Parameter
Tuning

Automatic
Parameter
Tuning

Genetic
Improvement

Automatic
Design of
Algorithms

Genetic
Programming

GI &
Benchmarking

1. GP suffered a “midlife crisis”
2. Toy problem e.g. lawnmower
3. Genetic Programming Needs Better Benchmarks [White et al.]
4. Machine Learning that Matter [Wagstaff 2012] what is 1% meaning
5. Is Software Engineering the best benchmark for GP?
6. Do we have a stable set of benchmarks for GI?

(for program repair: http://program-repair.org/benchmarks.html)
7. Benchmarking is more complex (noise, hardware, prog lang, …)

http://program-repair.org/benchmarks.html

Measuring Energy
● computational energy consumption

growing importance, particularly at the
extremes (i.e., mobile devices and
datacentres).

one line = one unit
simulate (runtime/system calls/) Tools Opacitor,
PowerGauge
read battery indicator
physically measure and validate(e.g. see Bokhari
et al.)

1%

GI@GECCO’17

CEC 2019

Measuring Energy
Trade-offs to exploit, but lots of noise and many confounding factors

84

GI@ICSE’21

“the variant is demonstrated to be
significantly different from itself!”

GECCO ’20

activities

video

January 2018

Growth of papers

How will it continue…???

SOURCE CODE
WILL ALWAYS
BE IMPORTANT

Source of Genetic Material
1. the program being improved,

2. a different program written in the same
language (Petke: MiniSAT competition),

3. a piece of code generated from scratch (GP),

4. different programming language other than the
software to be improved.

• Hard!

• NFL not really valid for GP, and therefore GI.
• Why – because many programs share same functionality.

=> GI will remain empirical for years to come

Theory

Bobby R.
Bruce

BREAKDOWN
papers by application

Grant Writing
● A grant about GP

(0%)

VS

● A grant about GI.
(100%)

Websites
● http://geneticimprovementofsoftware.com/
● https://en.wikipedia.org/wiki/Genetic_improvement_(com

puter_science)
● http://www.davidrwhite.co.uk/
● http://daase.cs.ucl.ac.uk/
● http://crest.cs.ucl.ac.uk/publications/
● https://clairelegoues.com/blog/
● https://cs.adelaide.edu.au/~optlog/research/software.php

http://geneticimprovementofsoftware.com/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.davidrwhite.co.uk/
http://daase.cs.ucl.ac.uk/
http://crest.cs.ucl.ac.uk/publications/
https://clairelegoues.com/blog/
https://cs.adelaide.edu.au/~optlog/research/software.php

Starting point – POP science, GIN, Survey

GI@GECCO’19

(2017)

Overview

93

● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

Get involved with
GI in No time - or GIN

94

Available at
https://github.com/gintool/gin

v2.0 published in June 2019
“Gin: Genetic Improvement Research

Made Easy” (GECCO 2019)http://www.davidrwhite.co.uk/

(Inaugural paper at
GI@GECCO 2017)

https://github.com/gintool/gin

The inaugural paper
official V2.1 released on 7 March 2023:
https://github.com/gintool/gin/releases

https://github.com/gintool/gin/releases

Bradley Alexander Earl T. Barr Sandy Brownlee

Justyna Petke Markus Wagner
Also uses GIN in teaching since 2017

https://tinyurl.com/giassignment

David R. White

https://tinyurl.com/giassignment

“Stupidly simple”
GIN ECJ

https://cs.gmu.edu/~eclab/projects/ecj/

https://cs.gmu.edu/~eclab/projects/ecj/

Genetic Improvement
● Many success stories

● …however, these typically need at GI expert in the loop

● What’s needed is a more systematic approach

● A toolkit to enable experimentation

Gin’s Goals
● Remove incidental difficulties of GI for research and teaching

● Enable focus on general questions

● Provide a central tool for the community

● Support more than bug-fixing: non-functional properties

● Work on open-source software projects out-of-the-box

Gin Design

What’s in Gin?
● Implementations of edits for source code
● Evaluate edits: compile and run JUnit tests
● Searches and Samplers
● Test generation (EvoSuite)
● Profiler to identify hot methods (hprof, Java Flight Recorder)
● Build tool integration (Maven, Gradle)

Let’s see those in more detail...

101

Vanilla GIN: Neighbourhood search

Source-code AST AST Optimised
Source

Apply Patch

Better than before?

End?

Converted to Converted to

JUnit Test Cases

Run Revert

No

Yes

Yes

No

Gin Pipelines

● Edits are single changes to source code
● Building blocks of a repair
● Combined into Patches
● Question: actually, what scale might an edit be?

● Gin supports edits at:
● line level (Langdon) - delete/replace/copy/swap/move
● statement level (GenProg) - delete/replace/copy/swap/move
● constrained (matched) statement - replace/swap
● micro edits

● binary & unary operator replacement (OR ⬄AND) (++ ⬄ --)
● reorder Boolean expressions (X && Y ⬄ Y && X)

● loop and method shortcuts (insert return/break/continue)

Edits

Edits
● We provide many wrappers to make your life easier, so that you can

focus on higher-level tasks:
● “Tell me which lines are eligible for deletion in this method”
● “Delete this line”
● “Give me all the for loop conditions in this method”
● And many more...

Example edits

Disclaimer: this was an old version.
Today, it is a little bit longer, e.g., to
prevent us from replacing statements
within the same parent node.

Example edits

Patch Evaluation
Gin invokes test
cases via Junit
and tracks:
● compile success;
● run-time errors,

exception types
● actual &

expected
outcomes

● timing:
wall-clock and
CPU time; peak
memory

108

An analogy: video editing.
Here: Gin Compiles and Reloads
on-the-fly

Note: If you prefer to use
the more “traditional”
way of writing the file to
disk first - e.g., due to
integration of Gin into
other pipelines - then you
can use a command-line
flag to do so.

DeleteEnumerator

● Included samplers:
● EmptyPatchTester
● RandomSampler
● DeleteEnumerator

● Searches: LocalSearch, GP, NSGA-II

● Possible Questions:
● What is the effectiveness of a

given edit type for fixing a
category of bug?

● How robust is the space of
single-line edits, modulo the
given test suite?

● ...

Sampling and
Searching

Sampling
The following is one really wide output file - here of RandomSampler:

Local search

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)

Local search, output

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Finished. Best time: 38744892 (ns), Speedup (%): 97.64, Patch: | gin.edit.line.DeleteLine
examples/triangle/Triangle.java:10 |

Local search, output

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 delay();

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

-bash-4.1$ cat examples/triangle/Triangle.java.optimised
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

Lo
ca

l s
ea

rc
h:

W

ha
t d

id
 w

e
ac

tu
al

ly
 o

pt
im

ise
 h

er
e?

The
problematic
line was
deleted.

Generating tests and Profiling
Generate new test cases

Profile a test suite

Results written to

Build tool integration
● Maven and Gradle API documentation is sparse!

● And many projects seem to break conventions about paths, resources etc.
●Project class wraps most of what we have learned

● provide the classpath for a project
● find a particular source file within a project’s file hierarchy
● provide a standard method signature for a given method
● provide a list of project tests
● run a unit test given its name

● Gin can infer the necessary classpath and dependencies for running
unit tests from a Maven or Gradle project, or these can be specified
manually

● Maven projects can be updated automatically with new unit tests
from EvoSuite

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1

Examples with jCodec (maven
project)

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv

● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-o $projectnameforgin.Profiler_output.csv -r 1
● EmptyPatchTester
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.EmptyPatchTester_output.csv
● PatchSampler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.PatchSampler
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d .
-m $projectnameforgin.Profiler_output.csv
-o $projectnameforgin.PatchSampler_LINE_output.csv -editType LINE -patchNo 100

● Generate tests
java -cp build/gin.jar gin.util.TestCaseGenerator -projectDir ../casestudies/RxJava
-projectName RxJava -evosuiteCP libs/evosuite-1.0.6.jar -generateTests -classNumber 3
-projectTarget ../casestudies/RxJava/build/classes/java/main

Examples with jCodec (maven
project)

Gin
● Available at https://github.com/gintool/gin

● The team actively uses Gin to push
the GI boundaries, and quite a few
papers are in the works.

● Open for contributions!
● Particularly new edits and tools
● https://github.com/gintool/gin
● we’d like this to become the MiniSAT of GI

Comments/questions: Sandy (Alexander E.I. Brownlee) sbr@cs.stir.ac.uk

https://github.com/gintool/gin
https://github.com/gintool/gin
mailto:sbr@cs.stir.ac.uk

Search spaces and targeting
● Recent study using Gin
● We looked at 10 open source projects

● arthas, disruptor, druid, gson, jcodec, junit4, mybatis-3, opennlp,
apache spark, spatial4j

● Applied 1M patches to these
● Copy/Delete/Replace/Swap
● 10k each of 1-5 edits
● Line and Statement

● Profiled (using Gin HPROF)
● Measured compile/test pass rates (Using Gin RandomSampler)

126

127

Line edits generate ⅓ as many test passing variants as statement

128

Big hurdle is compilation: rates drop 50% with each additional edit for
line, and 25% for statement. Of compiling variants, drop in test-pass
rate less severe

129

Targeting
Still learning where and when GI
works well

130

Targeting
Still learning where and when GI
works well

Lots of open questions here:
● Good edits
● What to target them?
● Landscapes…

131

Overview
● Introduction

● Fixing Bugs and other examples

● Noteworthy papers and issues

● Getting involved

● Summary and Q&A

132

Genetic Improvement
vs

Genetic Programming
1. Start from an existing program
2. BLOAT? – interpretation?
3. NO function / terminal set
4. Improvement of non-functional properties.
5. Easier to write grants
6. Different benchmarks.
7. Population of edits NOT programs.

PUTTING IT ALL TOGETHER
● Let’s start with existing programs. Not like standard GP.
● Python vs C vs Java? Amenable to GI? Most popular
● Benchmarking ???
● Population of edits, not programs
● GP applied to real software

● Large, loops, side-effect, modules,…
● Non functional properties

● Open Question: where do humans fit in?

GI Workshop
The 12th International Workshop on Genetic Improvement
@ICSE 2023

● Held on 20 May
● Keynotes from Myra B. Cohen and Sebastian Baltes
● 6 accepted papers
● Future workshops http://geneticimprovementofsoftware.com

135

https://gecco-2022.sigevo.org/HomePage
http://geneticimprovementofsoftware.com

Questions?

Sæmundur (Saemi) Haraldsson <soh@cs.stir.ac.uk>

John Woodward <j.woodward@qmul.ac.uk>

Alexander (Sandy) Brownlee <alexander.brownlee@stir.ac.uk>

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf

136

mailto:soh@cs.stir.ac.uk
mailto:j.woodward@qmul.ac.uk
mailto:alexander.brownlee@stir.ac.uk
https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2023.pdf

Bibliography
S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI:
https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling.
http://hdl.handle.net/1893/26007

S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir and V. Gudnason, "The use of predictive models in dynamic treatment planning," 2017 IEEE Symposium
on Computers and Communications (ISCC), Heraklion, 2017, pp. 242-247. DOI: https://10.1109/ISCC.2017.8024536

S. O. Haraldsson, R. D. Brynjolfsdottir, V. Gudnason, K. Tomasson and K. Siggeirsdottir, "Predicting changes in quality of life for patients in vocational rehabilitation," 2018 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), Rhodes, 2018, pp. 1-8. DOI: https://10.1109/EAIS.2018.8397182

Siggeirsdottir, K., Brynjolfsdottir, R.D., Haraldsson, S.O., Vidar, S., Gudmundsson, E.G., Brynjolfsson, J.H., Jonsson, H., Hjaltason, O. and Gudnason, V., 2016. Determinants of
outcome of vocational rehabilitation. Work, 55(3), pp.577-583. DOI: https://10.3233/WOR-162436

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., & Woodward, J. R. (2017). Genetic improvement of software: a comprehensive survey. IEEE Transactions
on Evolutionary Computation, 22(3), 415-432. DOI: 10.1109/TEVC.2017.2693219

137

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007

J. Petke, B. Alexander, E.T. Barr, A.E.I. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.I. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: https://doi.org/10.1145/3321707.3321841

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’.
In Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA,
207–215. DOI: https://doi.org/10.1145/3286978.3287014

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.org/abs/2004.04500v1

M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a
proof-of-concept’. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL:
https://doi.org/10.1145/3067695.3082519

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:
https://doi.org/10.1109/CEC.2019.8790246

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software
Engineering, Springer. Published 22 April 2020. DOI: https://doi.org/10.1007/s10664-020-09808-9

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341–352. DOI: https://doi.org/10.1145/3196398.3196442

E. R. Winter et al., "Let's Talk With Developers, Not About Developers: A Review of Automatic Program Repair Research," in IEEE Transactions on Software Engineering, doi:
https://10.1109/TSE.2022.3152089

V. Nowack et al., "Expanding Fix Patterns to Enable Automatic Program Repair," 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), 2021, pp.
12-23, doi: https://10.1109/ISSRE52982.2021.00015 .

138

https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3286978.3287014
https://arxiv.org/abs/2004.04500v1
https://doi.org/10.1145/3067695.3082519
https://doi.org/10.1109/CEC.2019.8790246
https://doi.org/10.1007/s10664-020-09808-9
https://doi.org/10.1145/3196398.3196442

