
Genetic Improvement: Taking real-world
source code and improving it using

computational search methods
Alexander Brownlee, Sæmundur Ó. Haraldsson, Markus Wagner, John R. Woodward

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2024.pdf

GECCO 2024

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

GECCO '24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0495-6/24/07.
https://doi.org/10.1145/3638530.3648418

This work is licensed under a Creative Commons
Attribution International 4.0 License.

http://creativecommons.org/licenses/by/4.0/

https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2024.pdf
http://creativecommons.org/licenses/by/4.0/

● Saemundur O. Haraldsson is a Lecturer at the University of Stirling. He co-organised
every version of this tutorial. He has multiple publications on Genetic Improvement,
including two that have received best paper awards. Additionally, he co-authored the
first comprehensive survey on GI 1 which was published in 2017. He has been invited
to give talks on the subject in two Crest Open Workshops and for an industrial
audience in Iceland. His PhD thesis (submitted in May 2017) details his work on the
world's first live GI integration in an industrial application.

● Alexander (Sandy) Brownlee is a Senior Lecturer in the Division of Computing Science
and Mathematics at the University of Stirling. His main topics of interest are in
search-based optimisation methods and machine learning, with applications in civil
engineering, transportation and SBSE. Within SBSE, he is interested in automated
bug-fixing and improvement of non-functional properties such as run-time and energy
consumption; how these different objectives interact with each other; and novel
approaches to mutating code. He is also one of the developers of Gin, an open-source
toolkit for experimentation with Genetic Improvement on real-world software projects.

Instructors

● Markus Wagner is an Associate Professor at the Department of Data Science and AI, Monash
University, Australia. His research includes mathematical runtime analysis of heuristic
optimization algorithms, theory-guided algorithm design, and applications of heuristic methods to
software engineering and renewable energy production. He has led industry-funded projects by
Google, Facebook, and other companies in defense and mining. He has authored about 200
articles and has attracted over AUD 10M in funding. His awards include one best poster, one best
presentation, four best papers, one medal, and one Humies Gold Award.

● John R. Woodward is Head of Department at Loughborough University and previously led The
Operational Research Group at Queen Mary University of London. He has also been a lecturer at
the University of Stirling and the University of Nottingham. John holds a BSc in Theoretical
Physics, an MSc in Cognitive Science, and a PhD in Computer Science from the University of
Birmingham. His research interests include Automated Software Engineering, AI/Machine
Learning, and Genetic Programming. He has over 50 publications and has given more than 50 talks
at international conferences. John's experience spans industrial, military, educational, and
academic settings, including employment with EDS, CERN, RAF, and three UK universities.

Instructors

● John R. Woodward is Head of Department at Loughborough University. Previously he was
Head of The Operational Research Group at the Queen Mary University of London. Formerly
he was a lecturer at the University of Stirling, and was employed on the DAASE project
(http://daase.cs.ucl.ac.uk/). Before that he was a lecturer for four years at the University of
Nottingham. He holds a BSc in Theoretical Physics, an MSc in Cognitive Science and a PhD in
Computer Science, all from the University of Birmingham. His research interests include
Automated Software Engineering, particularly Search Based Software Engineering, Artificial
Intelligence/Machine Learning and in particular Genetic Programming. He has over 50
publications in Computer Science, Operations Research and Engineering which include both
theoretical and empirical contributions, and given over 50 talks at International Conferences
and as an invited speaker at Universities. He has worked in industrial, military, educational
and academic settings, and been employed by EDS, CERN and RAF and three UK Universities.

● Introduction: why GI? John
● Basic principles: approaches, objectives John
● Challenges and open research questions Markus
● Case study: fixing bugs Saemi
● The human perspective Saemi
● Noteworthy papers, and connections to other topics Markus
● Demonstration: Gin Sandy
● Summary and Q&A John

Overview

4

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

5

Justyna Petke

There is nothing
correct about a flat
battery
(BILL LANGDON)

UNITS

LOGICAL
PHYSICAL

accuracy

Justyna Petke

What is Genetic Improvement

A wordy definition:
Genetic Improvement is the application of search-based
(typically evolutionary) techniques to modify software

with respect to some user-defined fitness measure.

It’s just GP - BUT starting
with a nearly complete

program
[Wolfgang Banzhaf]

What is Genetic Improvement

GI Improve
Functional
Properties

Improve
non-functional

properties

Automatic
Bug fixing

Feature
Transplantation

‘Grow
and

Graft’

Improve
energy

consumption

Improve
Execution

time
Auto-parallelisation

Improve
memory

consumption

Software
Slimming

Genetic Programming overview

10

mutation crossover

Genetic Programming: GI’s ROOTS
1. Aim – to discover new programs by telling the computer what we want it

to do, but not how we want it to do it – John Koza
2. How – we evolve computer programs using natural selection.
3. Starts from scratch (empty program)
4. Choose primitives (terminal set/FEATURES and function set)
5. Choose representation (tree based, graph based, linear e.g. CGP)
6. Choose fitness function, parameters, genetic operators.

GI forces “the full capabilities of
programming languages”- side
effects, ADFs, LOOPS

Popular Science
● easy to digest articles for non-specialists.

https://theconversation.com/computers-will-s
oon-be-able-to-fix-themselves-are-it-departm
ents-for-the-chop-85632

IT?

https://theconversation.com/how-computers
-are-learning-to-make-human-software-work-
more-efficiently-43798

http://www.davidrwhite.co.uk/2014/11/27/ge
netic-programming-has-gone-backwards/

http://www.davidrwhite.co.uk/tag/
genetic-programming/

Competent Programmers Hypothesis
1. programmers write programs that are almost perfect.

2. program faults are syntactically small (slip of finger, T/F)

3. corrected with a few keystrokes. (e.g. < for <=)

4. GI can find small patches.

5. Small changes are non-unique (write 7 lines code, or utter 7 words
before they’re unique)

Plastic Surgery Hypothesis.
the content of new code can often be assembled
out of fragments of code that already exist.

Barr et al. [71] showed that changes are 43% graftable from the exact
version of the software being changed.

The Plastic Surgery Hypothesis: Changes to a codebase contain snippets
that already exist in the codebase at the time of the change, and these
snippets can be efficiently found and exploited.
THE CODE CONTAINS SOLUTIONS – CANDIDATE PATCHES

Representations of PROGRAMS
Natural Representation of CODE

1. Text files e.g. Program.java is a text file. Saemi.
2. Abstract syntax tree (AST) – Genprog, Genofix.
3. Java byte code (also C binaries) [102]

4. Errors, compile, halting (Langdon - discard)

Objectives
● Functional (logical properties)

● Accuracy e.g. as in machine learning - FLOAT
● Number of bugs – as measured against a set of test cases. BOOLEAN
● New functionality – e.g.

● Non-functional (physical properties)
● Execution time
● Energy (power consumption – peak/average)
● Memory
● Bandwidth

● Multi-objective
● Trade-offs, convex, a set of programs = a single tuneable program

Multi-Objective
● Seems be convex
● – simple argument (see pic)
● Can provide a set of programs
● weighted sum of objectives?
● weight has meaning to user.
● Will there be elbow/knee points?

Slow connections….

GISMOE
The GISMOE challenge:
to create an automated program
development environment in
which the Pareto program surface
is automatically constructed to
support dialog with and decision
making by the software designer
concerning the trade offs present in
the solution space of programs for
a specific programming problem.

EDIT Operators – changes to programs
● Line level
● Single Character level
● Function/module level.
● AST – GIN, Gen-0-fix, genprog,
● Java – machine code – java byte code.

● LIST OF EDITS IS A PATCH.

GI: An example of execution time
optimisation

Start

delay() if a + b < c

INVALID if a == b and b
==c

EQUALATERAL if a==b or b==c

ISOCELES SCALINE

GI: An example of automated bug
fixing

Start

if a + b < c

INVALID if a == b and b
==c

ISOCELES if a==b or b==c

EQUALATERAL SCALINE

structure

Hill
climber

Neutral
networks
Graceful
degradation

System Diagram for Gen-O-Fix

John Woodward (Stirling)

Gen-O-Fix: Abstract Syntax Trees
Main features of framework are
1. Embedded adaptively.
2. Minimal end-user requirements.

1. Initial source code: location of Scala source code file
containing a function

2. Fitness function: providing a means of evaluating
the quality of system

3. Source to source transformations
4. Operates on ASTs (i.e. arbitrarily fine).

AST - scala

Gen-O-Fix output

John Woodward (Stirling)

GI Hashcode tuning
1. Hadoop provides a mapReduce

implementation in Java.
2. Equals method has to obey contract

(Reflective, Symmetric, Transitive, …)
3. x.equals(y) implies hashCode(x)==

hashCode(y).
4. hashCode method is an integer

function of a subset of an object's fields

Some GP Settings
1. Terminal set is

1. Field values
2. Random integers [0, 100]

2. Function set is
1. {+, *, XOR, AND}

3. Fitness function: close to uniform distribution of
hashes (uniform distribution is the ideal), over
10,000 instances.

Distribution of Hashcodes

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

38

• Hard!

• NFL not really valid for GP, and therefore GI.
• Why – because many programs share same functionality… and the NFL

would assume that all program are equally likely (which is not the case
in practical applications)

=> GI will remain empirical for years to come

Theory

Theory

40

E.g. Landscapes…
Lots of neutrality!

Veerapen N, Ochoa G. Visualising
the global structure of search

landscapes: genetic improvement as
a case study. Genetic programming

and evolvable machines. 2018.
19(3):317-49

Theory

41

E.g. Sampling of the space

Theory

42

Lots remains!

Where and when does GI work best?

How does this vary for functionality / run time / energy … ?

GI &
Benchmarking

1. GP suffered a “midlife crisis”

2. Toy problem e.g. lawnmower

3. Genetic Programming Needs Better Benchmarks [White et al.]

4. Machine Learning that Matter [Wagstaff 2012] what is 1% meaning

5. Is Software Engineering the best benchmark for GP?

6. Do we have a stable set of benchmarks for GI?
(for program repair: http://program-repair.org/benchmarks.html)

7. Blot, Aymeric, and Justyna Petke. "A Comprehensive Survey of Benchmarks for Automated
Improvement of Software's Non-Functional Properties" arXiv:2212.08540 (2022).

8. Benchmarking is more complex (noise, hardware, prog lang, …)

http://program-repair.org/benchmarks.html

Measuring Energy
● computational energy consumption

growing importance, particularly at the
extremes (i.e., mobile devices and
datacentres).

one line = one unit
simulate (runtime/system calls/) Tools Opacitor,
PowerGauge
read battery indicator
physically measure and validate(e.g. see Bokhari
et al.)

Global data centers: 1% of
global energy consumption

GI@GECCO’17

CEC 2019

Measuring Energy
Trade-offs to exploit, but lots of noise and many confounding factors

GI@ICSE’21

“the variant is demonstrated to be
significantly different from itself!”

GECCO ’20

Shown:
measurements
of the same
task… just the
phone was
recharged and
restarted
between run1
and run2

GI to eliminate side-channels
Minimise the “signal” when performing cryptographic operations, as they
can leak information on the secret key via power consumption profiling!

“the variant is demonstrated to be
significantly different from itself!”

NDSS’21

CCS’22

GI to improve Speed
Also noisy… also platform dependent (read: you can specialise code to
architectures)

PLDI’23
Distinguished Paper
Humies’23 Gold Award

Key aspects:
- Demonstrated on straight line code

(cryptographic primitives)
- Optimisation at the levels of: intermediate

representation & Assembly
- Automatic formal proofs of correctness
- Yields new, fastest implementations
- Curve25519 Code in BoringSSL

⇒ this runs in your
Chrome and Edge browser
now!

What about Copilot/ChatGPT…?
Large language models generate code!

Replicate patterns given some prompt

Can lead to errors!* Related-but-incorrect solutions

GI search tests the code as it goes, so can be constrained to only produce
variants that (probably) work

*Jones E & Steinhardt J. Capturing failures of large language models via human cognitive biases. In AH Oh, A
Agarwal, D Belgrave & K Cho, eds., Advances in Neural Information Processing Systems. 2022

49

2023 IEEE/ACM International Workshop on
Automated Program Repair (APR), 2023

12th International Workshop on Genetic Improvement
ICSE 2023

SSBSE Challenge Track 2023

FORGE 2024

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

50

Case study
Fixing bugs: A real world example of GI in action

51

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin
Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an
overnight success. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI:
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test
Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th
International Workshop on Search-Based Software Testing (SBST), Buenos Aires,
2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and
Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape
in a bioinformatics application. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO '17). ACM, New York, NY, USA,
1521-1528. DOI: https://doi.org/10.1145/3067695.3082526

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program
Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of
Stirling, Stirling. http://hdl.handle.net/1893/26007

G. B. Saemundsdottir, and S.O. Haraldsson 2024. “Large Language Models as
All-in-One Operators for Genetic Improvement.”, to appear in Proceedings of the
Genetic and Evolutionary Computation Conference Companion (GECCO '24). ACM,
New York, NY, USA, 1501-1508. URL: https://doi.org/10.1145/3638530.3654408

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3638530.3654408

When last user logs out

1. Procedure 2.0 started
● Sorts and filters the

day’s exceptions
2. Procedure 3.0

● Emulates input data,
type, size and structure.

● Produces test cases
3. Procedure 4.0

● Genetic Improvement
● Parallel process on the

server
● Outputs report for

developer

52

53

● Procedure 4.0
● Genetic Improvement

● Pop.= 50 patches
● fit.= #passed tests
● select= ½ pop by fitness
● Output= report

4 different types of implemented Edits
Primitive types:

● Copy
● Equivalent to:

CTRL+C -> CTRL+V
● Delete

● Almost what you think

54

Composite types:
● Replace

● Copy + Delete
● Swap

● 2x Copy + 2x Delete

A list of edits makes a suggestion

● Reads like a recipe
● Step-by-step

● Automatically reduced
● Delta debugging

● Scrutinised by the developer
● Might change the recipe

55

Or just let an LLM do the work

56

 Representation
 Of the Code
 Of the Changes

 Reliability
 Of the Prompts
 Of the User

Points to keep in mind though:

 Readability
 To the human

 Efficiency vs Workload distribution
 Prompt engineering

 vs
 Computations (The GI search)

 vs
 The LLM Model

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

57

The human perspective

58

E. R. Winter et al., "Let's Talk With Developers, Not About Developers: A Review of
Automatic Program Repair Research," in IEEE Transactions on Software Engineering,
doi: https://doi.org/10.1109/TSE.2022.3152089

V. Nowack et al., "Expanding Fix Patterns to Enable Automatic Program Repair," 2021
IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE),
2021, pp. 12-23, doi: https://10.1109/ISSRE52982.2021.00015 .

E. Winter et al., "How do Developers Really Feel About Bug Fixing? Directions for
Automatic Program Repair," in IEEE Transactions on Software Engineering, vol. 49,
no. 4, pp. 1823-1841, 1 April 2023, doi: 10.1109/TSE.2022.3194188.

https://doi.org/10.1109/TSE.2022.3194188

For the researcher

59

For the developer

60

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

61

Improving CUDA DNA Analysis Software with
Genetic Programming (2015)
W.B. Langdon , B.Y.H. Lam , J. Petke & M. Harman

1. DNA sequencing
2. consisting of 8,000+ lines

of code.
3. improved version is up to

3x faster
4. downloaded 1,000 times.
5. Ported by IBM to one of

their super computers

A 50,000 line
system

•Bowtie2, a DNA sequence
alignment/sequence analysis tool

•Using Genetic Improvement, Harman
and Langdon were capable of
increasing performance 70x.

Automatic Bug fixing — GenProg

Source
code

Converted to AST

Test cases

Spectrum-based
fault localisation
(e.g. LOC visited in

only a buggy case →
high weight)

Mutation
Operators:

Deletion
Replace

Copy

Fitness = number of
passed test cases

• Where an adequate test
suite is provided, GenProg
has been shown to fix
real-world bugs

• It has inspired a variety of
alternative frameworks,
most of which claim to
outperform GenProg

(2012)
Cited >700 times

Featured in:

Donor Host

English to Korean;
English to Portuguese

(2015)

(2014)

muScalpel

Face
Detec
tion

Face

Not A Face

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Face
Detec
tion

Face

Not A Face

Integer
Literals

extracted

221 25To a genotype

Multi-objective
optimisation

Original: 191s, 1.04% inaccuracy
99s (48% decrease), 1.8% inaccuracy
68s (64% decrease), 5.4% inaccuracy
46s (76% decrease), 15.4% inaccuracy

68

● David R. White
● Andrea Arcuri
● Bobby R. Bruce
● Sæmundur Ó. Haraldsson
● Mahmoud R. Bokhari
● Michail Basios
● And many more to come...

Phd Theses

Relationship to other fields
● Optimization/machine learning - OVERFITTING (or: specialisation?)

(“Is the cure worse than the disease?” Smith et al. FSE 2015)
● Genetic Programming and Metaheuristics
● the automatic design of algorithms
● Automatic parameter tuning/deep parameter tuning/GI

Deep
Parameter
Tuning

Automatic
Parameter
Tuning

Genetic
Improvement

Automatic
Design of
Algorithms

Genetic
Programming

Starting point – Surveys

GI@GECCO’19

(2017)

Starting point – Surveys

arXiv
2023

arXiv
2022

Starting point – Websites
● http://geneticimprovementofsoftware.com/
● https://geneticimprovementofsoftware.com/learn/survey - living survey

● https://en.wikipedia.org/wiki/Genetic_improvement_(computer_s
cience)

73

http://geneticimprovementofsoftware.com/
https://geneticimprovementofsoftware.com/learn/survey
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)

● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

74

Demonstration: Gin

75

Gin
Genetic Improvement in No time
Toolbox for GI research targeting Java
https://github.com/gintool/gin
Initiated by David White, developed through community effort

Other tools exist! For example:
GI: PyGGI, locoGP
APR: ASTOR, GenProg
See also: Zuo, Blot, Petke: Evaluation of genetic improvement tools for improvement of
non-functional properties of software. GECCO '22

76

https://github.com/gintool/gin

Goals / principals

What’s in Gin?
Pipelines
Example Edits
Sampling and Searching
Papers

77

Gin’s Goals / Principals
A toolkit to enable experimentation

Remove incidental difficulties of GI for research and teaching

Work on open-source software projects out-of-the-box

78

Gin’s Goals / Principals

79

Gin Pipelines

Could be random, or search for improvement

Edits
● Edits are single changes to source code

● Building blocks of a repair
● Combined into Patches

● Gin supports edits at:
● line level (Langdon) - delete/replace/copy/swap/move
● statement level (GenProg) - delete/replace/copy/swap/move
● constrained (matched) statement - replace/swap
● micro edits

● binary & unary operator replacement (OR ⬄AND) (++ ⬄ --)
● reorder Boolean expressions (X && Y ⬄ Y && X)
● loop and method shortcuts (insert return/break/continue)

● LLM edits
81

Edits
● Gin also provides tools to make designing your own edits easier so

that you can focus on higher-level tasks:
● “Tell me which lines are eligible for deletion in this method”
● “Delete this line”
● “Give me all the for loop conditions in this method”
● And many more...

82

Example edits

Disclaimer: this is a simplified version
to illustrate. Some detail (e.g.
serialisation, and code to avoid
replacing statements within the same
parent node) is omitted

Example edits
 public InsertBreak(SourceFile sourceFile, Random rng) {
 SourceFileTree sf = (SourceFileTree) sourceFile;
 List<Integer> targetMethodBlocks = sf.getBlockIDsInTargetMethod();
 int insertBlock = targetMethodBlocks.get(rng.nextInt(targetMethodBlocks.size()));
 int insertStatementID = sf.getRandomInsertPointInBlock(insertBlock, rng);
 if (insertStatementID < 0) {
 insertStatementID = 0; // insert at start of empty block
 }
 this.destinationFilename = sourceFile.getRelativePathToWorkingDir();
 this.destinationBlock = insertBlock;
 this.destinationChildInBlock = insertStatementID;
 }

…
 public SourceFile apply(SourceFile sourceFile) {
 SourceFileTree sf = (SourceFileTree) sourceFile;
 BreakStmt toInsert = new BreakStmt();
 toInsert.removeLabel(); // a bit weird but if we don't do this we get "break empty;"
 // insertStatement will also just do nothing if the destination block is deleted
 sf = sf.insertStatement(destinationBlock, destinationChildInBlock, toInsert);
 return sf;
 }

84

Patch / Edit Evaluation
Gin invokes test
cases via Junit and
tracks:
● compile success;
● run-time errors,

exception types
● actual &

expected
outcomes

● timing:
wall-clock and
CPU time; peak
memory; (energy
coming soon)

85

DeleteEnumerator

● Included samplers:
● EmptyPatchTester
● RandomSampler
● DeleteEnumerator

● Searches: LocalSearch, GP, NSGA-II

● Possible Questions:
● What is the effectiveness of a

given edit type for fixing a
category of bug?

● How robust is the space of
single-line edits, modulo the
given test suite?

● ...

Sampling and
Searching

Random Sampling Output
The following is one really wide output file…

Local search

-bash-4.1$ java -jar build/gin.jar gin.LocalSearch -filename examples/triangle/Triangle.java -m "classifyTriangle(int, int, int)"
2020-04-10 04:36:41 gin.LocalSearch.search() INFO: Localsearch on file: examples/triangle/Triangle.java method: classifyTriangle(int, int, int)
2020-04-10 04:36:44 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Original execution time: 1646971219ns
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 1, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:5 -> examples/triangle/Triangle.java:23
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 2, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:36 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 3, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:19 |, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 4, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:28 |, Failed to pass all tests
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 5, Patch: | gin.edit.line.ReplaceLine examples/triangle/Triangle.java:38 -> examples/triangle/Triangle.java:35
|, Failed to compile
2020-04-10 04:36:59 gin.LocalSearch.search() INFO: Step: 6, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:17 |, Failed to compile
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 7, Patch: | gin.edit.line.CopyLine examples/triangle/Triangle.java:34 -> examples/triangle/Triangle.java:13 |,
Failed to compile
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.test.InternalTestRunner.runSingleTest() WARNING: Possible hanging threads remain after test
2020-04-10 04:37:00 gin.LocalSearch.search() INFO: Step: 8, Patch: | gin.edit.line.SwapLine examples/triangle/Triangle.java:27 <-> examples/triangle/Triangle.java:10 |,
Failed to pass all tests

...

2020-04-10 04:36:26 gin.LocalSearch.search() INFO: Step: 96, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:8 <-> examples/triangle/Triangle.java:14 |, Failed to compile
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 97, Patch: |, Time: 1647522167ns
2020-04-10 04:36:28 gin.LocalSearch.search() INFO: Step: 98, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.CopyLine
examples/triangle/Triangle.java:51 -> examples/triangle/Triangle.java:26 |, Failed to compile
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 99, Patch: |, Time: 1648831018ns
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Step: 100, Patch: | gin.edit.line.DeleteLine examples/triangle/Triangle.java:10 | gin.edit.line.SwapLine
examples/triangle/Triangle.java:39 <-> examples/triangle/Triangle.java:29 |, New best time: 38744892(ns)
2020-04-10 04:36:29 gin.LocalSearch.search() INFO: Finished. Best time: 38744892 (ns), Speedup (%): 97.64, Patch: | gin.edit.line.DeleteLine
examples/triangle/Triangle.java:10 |

Local search, output

-bash-4.1$ cat examples/triangle/Triangle.java
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 delay();

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

-bash-4.1$ cat examples/triangle/Triangle.java.optimised
public class Triangle {

static final int INVALID = 0;
static final int SCALENE = 1;
static final int EQUALATERAL = 2;
static final int ISOCELES = 3;

public static int classifyTriangle(int a, int b, int c) {

 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return INVALID;
 } else if (a == b && b == c) {
 return EQUALATERAL;
 } else if (a == b || b == c) {
 return ISOCELES;
 } else {
 return SCALENE;
 }

}

private static void delay() {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {

 }
}

}

Lo
ca

l s
ea

rc
h:

W

ha
t d

id
 w

e
ac

tu
al

ly
 o

pt
im

ise
 h

er
e?

The
problematic
line was
deleted.

LLM support
Integration with:

- OpenAI API via langchain4j
- ollama for many other local LLMs

Plain text templates for prompts

Possibility to pass error messages etc. in the prompt

Currently in a development branch “llm” - full integration coming soon
91

LLM support
simple-prompt.txt

Give me $COUNT$ different Java implementations of this method body:```

$DESTINATION$

```

This code belongs to project $PROJECT$.

Wrap all code in curly braces, if it is not already. Do not include any method or class declarations. Label all code as java.

======================================

> projectnameforgin='jcodec'

> sampler='RandomSampler'

> editCount='1000'

> modelType='OpenAI'

> java -Dtinylog.level=trace -cp ../gin-llm/build/gin.jar gin.util.$sampler -j -p $projectnameforgin -d . -m 

../$projectnameforgin.Profiler_output.csv -o 

${projectnameforgin}.${sampler}_${modelType}_${promptLetter}_${editCount}_output.csv -h ~/.sdkman/candidates/maven/current 

-timeoutMS 10000 -et gin.edit.llm.LLMReplaceStatement -pn $editCount -pt simple-prompt.txt -mt $modelType -mo 300 -oaik demo

> modelType='mistral';

> java -Dtinylog.level=trace -cp ../gin-llm/build/gin.jar gin.util.$sampler -j -p $projectnameforgin -d . -m 

../$projectnameforgin.Profiler_output.csv -o 

${projectnameforgin}.${sampler}_${modelType}_${promptLetter}_${editCount}_output.csv -h ~/.sdkman/candidates/maven/current 

-timeoutMS 10000 -et gin.edit.llm.LLMReplaceStatement -pn $editCount -pt simple-prompt.txt -mt $modelType -mo 300

92



Generating tests and Profiling
Generate new test cases

Profile a test suite

Results written to



Example Profiler Output

94



Build tool integration
● Maven and Gradle API documentation is sparse!

● And many projects seem to break conventions about paths, resources etc.
●Project class wraps most of what we have learned

● provide the classpath for a project
● find a particular source file within a project’s file hierarchy
● provide a standard method signature for a given method
● provide a list of project tests
● run a unit test given its name

● Gin can infer the necessary classpath and dependencies for running 
unit tests from a Maven or Gradle project, or these can be specified 
manually

● Maven projects can be updated automatically with new unit tests 
from EvoSuite



● Profiler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.Profiler 
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d . 
-o $projectnameforgin.Profiler_output.csv -r 1 
● EmptyPatchTester
projectnameforgin='jcodec’; 
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.EmptyPatchTester -h 
~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d . 
-m $projectnameforgin.Profiler_output.csv 
-o $projectnameforgin.EmptyPatchTester_output.csv 
● PatchSampler
projectnameforgin='jcodec’;
java -Dtinylog.level=trace -cp ../../ginfork/build/gin.jar gin.util.PatchSampler 
-h ~/.sdkman/candidates/maven/current/ -p $projectnameforgin -d . 
-m $projectnameforgin.Profiler_output.csv 
-o $projectnameforgin.PatchSampler_LINE_output.csv -editType LINE -patchNo 100

● Generate tests
java -cp build/gin.jar gin.util.TestCaseGenerator -projectDir ../casestudies/RxJava 
-projectName RxJava -evosuiteCP libs/evosuite-1.0.6.jar -generateTests -classNumber 3 
-projectTarget ../casestudies/RxJava/build/classes/java/main

Examples with jCodec (maven 
project)



Gin papers
Available from https://github.com/gintool/gin 

Cite these:
GECCO 2019 GECCO 2017

97

https://github.com/gintool/gin


● Introduction: why GI? And basic principles
● Challenges and open research questions
● Case study: fixing bugs
● The human perspective
● Noteworthy papers, and connections to other topics
● Demonstration: Gin
● Summary and Q&A

Overview

98



GI Workshop
The 13th International Workshop on Genetic Improvement 
@ICSE 2024

● Held on 16 April
● Keynote from Shin Yoo and Tutorial from Aymeric Blot
● 7 accepted papers
● Future workshops http://geneticimprovementofsoftware.com

99

https://gecco-2022.sigevo.org/HomePage
http://geneticimprovementofsoftware.com


Summary and Q&A

100



Questions?

Sæmundur (Saemi) Haraldsson <soh@cs.stir.ac.uk>

John Woodward <j.woodward@qmul.ac.uk>

Alexander (Sandy) Brownlee <alexander.brownlee@stir.ac.uk>

Markus Wagner <markus.wagner@monash.edu>

Latest version of slides at https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2024.pdf                                                              
101

mailto:soh@cs.stir.ac.uk
mailto:j.woodward@qmul.ac.uk
mailto:alexander.brownlee@stir.ac.uk
mailto:markus.wagner@monash.edu
https://cs.stir.ac.uk/~sbr/files/GI_tutorial_GECCO_2024.pdf


Bibliography
S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success. In 
Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI: 
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th International 
Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10 

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling. 
http://hdl.handle.net/1893/26007 

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a 
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI: 
https://doi.org/10.1145/3067695.3082526 

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling. 
http://hdl.handle.net/1893/26007 

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., & Woodward, J. R. (2017). Genetic improvement of software: a comprehensive survey. IEEE Transactions on 
Evolutionary Computation, 22(3), 415-432. DOI: 10.1109/TEVC.2017.2693219 

J. Petke, B. Alexander, E.T. Barr, A.E.I. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and Evolutionary 
Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.I. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: https://doi.org/10.1145/3321707.3321841 

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’. In 
Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA, 207–215. 
DOI: https://doi.org/10.1145/3286978.3287014 

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.org/abs/2004.04500v1 

102

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3286978.3287014
https://arxiv.org/abs/2004.04500v1


M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a proof-of-concept’. In 
Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL: 
https://doi.org/10.1145/3067695.3082519 

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of 
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:  
https://doi.org/10.1109/CEC.2019.8790246 

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software Engineering, 
Springer. Published 22 April 2020. DOI: https://doi.org/10.1007/s10664-020-09808-9 

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the 
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341–352. DOI: https://doi.org/10.1145/3196398.3196442 

E. R. Winter et al., "Let's Talk With Developers, Not About Developers: A Review of Automatic Program Repair Research," in IEEE Transactions on Software Engineering, doi: 
https://10.1109/TSE.2022.3152089

V. Nowack et al., "Expanding Fix Patterns to Enable Automatic Program Repair," 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), 2021, pp. 
12-23, doi: https://10.1109/ISSRE52982.2021.00015 .

E. Winter et al., "How do Developers Really Feel About Bug Fixing? Directions for Automatic Program Repair," in IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 
1823-1841, 1 April 2023, doi: 10.1109/TSE.2022.3194188.

G. B. Saemundsdottir, and S. O. Haraldsson, 2024. “Large Language Models as All-in-One Operators for Genetic Improvement.”, to appear in Proceedings of the Genetic and 
Evolutionary Computation Conference Companion (GECCO '24). ACM, New York, NY, USA, 1501-1508. URL: https://doi.org/10.1145/3638530.3654408 

103

https://doi.org/10.1145/3067695.3082519
https://doi.org/10.1109/CEC.2019.8790246
https://doi.org/10.1007/s10664-020-09808-9
https://doi.org/10.1145/3196398.3196442
https://doi.org/10.1109/TSE.2022.3194188
https://doi.org/10.1145/3638530.3654408


Bibliography
S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement became an overnight success. In 
Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1513-1520. DOI: 
https://doi.org/10.1145/3067695.3082517

S. O. Haraldsson, J. R. Woodward and A. I. E. Brownlee, "The Use of Automatic Test Data Generation for Genetic Improvement in a Live System," 2017 IEEE/ACM 10th International 
Workshop on Search-Based Software Testing (SBST), Buenos Aires, 2017, pp. 28-31. DOI: https://10.1109/SBST.2017.10 

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling. 
http://hdl.handle.net/1893/26007 

S.O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its fitness landscape in a 
bioinformatics application. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1521-1528. DOI: 
https://doi.org/10.1145/3067695.3082526 

S.O. Haraldsson, 2017. ‘Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System’, PhD thesis, University of Stirling, Stirling. 
http://hdl.handle.net/1893/26007 

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., & Woodward, J. R. (2017). Genetic improvement of software: a comprehensive survey. IEEE Transactions on 
Evolutionary Computation, 22(3), 415-432. DOI: 10.1109/TEVC.2017.2693219 

J. Petke, B. Alexander, E.T. Barr, A.E.I. Brownlee, M. Wagner, and D.R. White, 2019. ‘A survey of genetic improvement search spaces’. In Proceedings of the Genetic and Evolutionary 
Computation Conference Companion (GECCO '19). ACM, New York, NY, USA, 1715-1721. DOI: https://doi.org/10.1145/3319619.3326870

A.E.I. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, and D.R. White, 2019. ‘Gin: genetic improvement research made easy’. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO '19). ACM, New York, NY, USA, 985-993. DOI: https://doi.org/10.1145/3321707.3321841 

M.A. Bokhari, B. Alexander, and M. Wagner, 2019. ‘In-vivo and offline optimisation of energy use in the presence of small energy signals: A case study on a popular Android library’. In 
Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous '18), ACM, New York, NY, USA, 207–215. 
DOI: https://doi.org/10.1145/3286978.3287014 

M.A. Bokhari, B. Alexander, and M. Wagner, 2020. ‘Towards Rigorous Validation of Energy Optimisation Experiments’. In Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO '20). ACM, New York, NY, USA. URL: https://arxiv.org/abs/2004.04500v1 

104

https://doi.org/10.1145/3067695.3082517
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3067695.3082526
http://hdl.handle.net/1893/26007
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3286978.3287014
https://arxiv.org/abs/2004.04500v1


M.A. Bokhari, B.R. Bruce, B. Alexander, and M. Wagner, 2017. ‘Deep parameter optimisation on Android smartphones for energy minimisation: a tale of woe and a proof-of-concept’. In 
Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '17). ACM, New York, NY, USA, 1501-1508. URL: 
https://doi.org/10.1145/3067695.3082519 

M.A. Bokhari, L. Weng, M. Wagner, and B. Alexander, 2019. ‘Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of 
noise, drift, and statistical insignificance’. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ‘19). IEEE, 1330-1337. DOI:  
https://doi.org/10.1109/CEC.2019.8790246 

A. Agrawal, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2020. ‘Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers’. Empirical Software Engineering, 
Springer. Published 22 April 2020. DOI: https://doi.org/10.1007/s10664-020-09808-9 

V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku, M. Wagner, and Z. Yu, 2018. ‘Data-driven search-based software engineering’. In Proceedings of the 
International Conference on Mining Software Repositories (MSR '18), ACM, New York, NY, USA, 341–352. DOI: https://doi.org/10.1145/3196398.3196442 

E. R. Winter et al., "Let's Talk With Developers, Not About Developers: A Review of Automatic Program Repair Research," in IEEE Transactions on Software Engineering, doi: 
https://10.1109/TSE.2022.3152089

V. Nowack et al., "Expanding Fix Patterns to Enable Automatic Program Repair," 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE), 2021, pp. 
12-23, doi: https://10.1109/ISSRE52982.2021.00015 .

E. Winter et al., "How do Developers Really Feel About Bug Fixing? Directions for Automatic Program Repair," in IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 
1823-1841, 1 April 2023, doi: 10.1109/TSE.2022.3194188.

G. B. Saemundsdottir, and S. O. Haraldsson, 2024. “Large Language Models as All-in-One Operators for Genetic Improvement.”, to appear in Proceedings of the Genetic and 
Evolutionary Computation Conference Companion (GECCO '24). ACM, New York, NY, USA, 1501-1508. URL: https://doi.org/10.1145/3638530.3654408 

105

https://doi.org/10.1145/3067695.3082519
https://doi.org/10.1109/CEC.2019.8790246
https://doi.org/10.1007/s10664-020-09808-9
https://doi.org/10.1145/3196398.3196442
https://doi.org/10.1109/TSE.2022.3194188
https://doi.org/10.1145/3638530.3654408

