
Injecting Shortcuts for Faster Running Java Code

Alexander E.I. Brownlee

Computing Science and Mathematics

University of Stirling

Scotland, UK

sbr@cs.stir.ac.uk

Justyna Petke

Department of Computer Science

University College London

London, UK

j.petke@ucl.ac.uk

Anna F. Rasburn

Computing Science and Mathematics

University of Stirling

Scotland, UK

Abstract—Genetic Improvement of software applies search
methods to existing software to improve the target program
in some way. Impressive results have been achieved, including
substantial speedups, using simple operations that replace, swap
and delete lines or statements within the code. Often this is
achieved by specialising code, removing parts that are unnec-
essary for particular use-cases. Previous work has shown that
there is a great deal of potential in targeting more specialised
operations that modify the code to achieve the same functionality
in a different way.

We propose six new edit types for Genetic Improvement of Java
software, based on the insertion of break, continue and return
statements. The idea is to add shortcuts that allow parts of the
program to be skipped in order to speed it up. 10 000 randomly-
generated instances of each edit were applied to three open-
source applications taken from GitHub. The key findings are: (1)
compilation rates for inserted statements without surrounding
“if” statements are 1.3–18.3%; (2) edits where the inserted
statement is embedded within an “if” have compilation rates
of 3.2–55.8%; (3) of those that compiled, all 6 edits have a high
rate of passing tests (Neutral Variant Rate), >60% in all but
one case, and so have the potential to be performance improving
edits. Finally, a preliminary experiment based on local search
shows how these edits might be used in practice.

Index Terms—Genetic Improvement, GI, Search-Based Soft-
ware Engineering, SBSE

I. INTRODUCTION

Genetic Improvement of software [1] (GI) is a rapidly

expanding area of research. GI uses automated search to

improve existing software. It has been used for the purpose

of bug fixing (e.g. [2]), runtime improvement (e.g. [3]),

optimisation of energy (e.g. [4]) and memory consumption

(e.g. [5]), among others. Changes evolved by GI have been

incorporated into development [6] and GI-based repair has

been incorporated into software development process [7]. Most

of these impressive results have been achieved by making

relatively simple modifications or edits to source code: some

combinations of moving, copying or deleting statements or

lines. This is rooted in the plastic surgery hypothesis [8], that

shows the building blocks of the most common human-made

patches to code were already present elsewhere in the program.

In the field of automated program repair (APR) there has

been more work devoted to finding more efficient mutation

operators. In particular, templates have been used, that have

been either based on human-evolved patches [9], [10] or

abstracted from fix operations at the abstract syntax tree

level [11]. More fine-grained operators have also been tried,

for example, at the expression level [7], or custom ones [12].

Much less work has been devoted to operators for improve-

ment of non-functional properties [13]. The only exception

being work on exchanging Java Collections [5], [14] and tun-

ing of parameters embedded in code (so-called deep parameter

tuning [15]).

Nevertheless, both within the GI and APR literature, delete

seems to be one of the most successful operators [16]. This

suggests that in real-world code there are often sections of

redundant code, particularly when limiting runs to specific

distributions of input data or use-cases. A related field, ap-

proximate computing [17], attempts to find trade-offs between

accuracy and resource consumption, underpinned by the idea

that not every line or statement needs executed every time.

This has led to approaches such as loop perforation [18]

(skipping some loop iterations). This background motivates

finding other approaches to create shortcuts in code: new

ways to change control flow while retaining functionality with

respect to a software oracle (the original working program) or

a test suite that captures the intended behaviour. Edits that

insert a return, continue or break statement represent

another way to skip sections of the code.

A recent study [16] explored in more depth the concept of

neutral program variants; i.e. implementations of a program

that are equivalent with respect to the test suite. They suggest

that where there are many neutral variants, there is a greater

chance of finding functional versions of the program that offer

some kind of improvement over the original (such as decreased

run time). They found that edits that add return statements

at random locations rarely produced neutral variants, but edits

adding if statements produced a high number of neutral

variants (perhaps to be expected as the condition means they

do not fire as often). This leads us to consider whether

edits that insert break statements within if statements will

represent a sweet spot: more likely to produce neutral variants

and more likely to offer some kind of improvement.

Thus, the goal of this paper is to propose and test new

edits for GI of Java code that add early break, continue

or return statements, within and without surrounding if

statements. These edits are tested on three popular open source

projects to determine how brittle the code is with respect to

these edits, and whether they can realise any improvements to

the code in terms of run time.

The edits are implemented and tested in the Gin frame-

work [19], [20]. Gin is a lightweight toolkit for experimenta-

tion in GI for Java projects. It provides utilities for: parsing

and manipulating Java source code as lines of text or as an

abstract syntax tree (using JavaParser); modifying, compiling

and running test suites of target Java projects implemented

using either Gradle or Maven build tools; profiling of a target

project to identify hotspots; and sampling the space of possible

edits with respect to a given project. The edits proposed in this

paper will be made publicly available via the Gin project on

GitHub at https://github.com/gintool/gin.

The paper begins in Section II by defining the proposed

operators, then describes our experimental procedure in Sec-

tion III. We then provide our experimental results in Sec-

tions IV to VI, before comparing our work to the relevant

literature in Section VII. We then draw our conclusions and

suggest future work in Section VIII.

II. OPERATORS

A. Basic approach

There are six edit operators. Each is created against a target

class C and a target method M within C. For each, a block

statement s and an insertion point p within s are selected

uniformly at random from all block statements in M. One of

the six statements from the list below is then inserted at p.

The six statements available are:

1) B: break;

2) C: continue;

3) R: return;

4) Bif : if (a) break;

5) Cif : if (a) continue;

6) Rif : if (a) return;

In the above, a can take one of two forms. An in-scope

primitive variable v is chosen at random following the pro-

cedure noted below. If v is of type boolean then a is one

of either v or !v (chosen at random). Otherwise, if v is of

any other primitive type (i.e. a number or character) then a

takes the form v # 0, where, # is one of the binary operators

<, <=, ==, >=, > (again chosen at random).

For simplicity, no attempt is made to detect a variable for

the inserted return statements, or a label for break/continue.

Neither is an attempt made to target R and Rif at only

void methods, or break / continue at blocks where these

are applicable. Of course, this will result in more failed

compilations, but edits where this is the case can quickly be

discarded. (The more problematic case is edits that compile

but cause the tests to fail, as this requires the time cost of

running the test suite).

B. Detecting local variables

Gin makes use of JavaParser1 to construct an Abstract

Syntax Tree (AST) representing the target source code. We

adopt the following approach to find in-scope variables for

a given target insertion point, a statement node s in the

1http://www.javaparser.org

{Input: Insertion point s}
n← s

V ← ∅

while n.hasParent() do

p← p.getParent()
for all c← p.getChildNodes() do

if c == n then

break

else

if c.isV ariableDeclarationExpr() or

c.isParameter() or c.isF ieldDeclaration()
then

if c.isPrimitiveType() then

V ← c

end if

end if

end if

end for

n← p

end while

return V

Fig. 1: Algorithm to find a list of in-scope variables V at

insertion point represented by AST statement node s

AST. (The inserted statement will be immediately before the

insertion point). From s, we walk recursively back up the

JavaParser AST, looking for any variable, field or parameter

declarations, until we reach the containing class of s. The

procedure is replicated in Figure 1.

III. EXPERIMENTS

In our experiments, we applied the edits to three publicly

available projects from GitHub:

• jCodec (0.2.3)2 (135k LoC)

• spark (2.7.2)3 (15k LoC)

• spatial4j (0.7)4 (14k LoC)

Gin retrieves the unit tests specified by the Maven build

script for the target project. In this case, we have run Gin’s

profiler, a wrapper for the hprof tool5, to determine the

hot methods and the unit tests that make calls to them (this

is achieved by sampling the call stack as the unit tests are

running; so it not just limited to direct calls from the unit

tests). Gin compiles the updated code, runs each unit test, and

for each test, retrieves the test result (pass with time taken

or fail with failure reason). The unit tests provided with each

project were found by the JaCoCo tool6 to have the following

statement coverage over the entire project: 34% for jCodec,

60% for spark, and 72% for spatial4j.

Gin’s profiler tool was applied to the test suite for the test

applications. The full profiler output (list of target methods,

2https://github.com/jcodec/jcodec
3https://github.com/perwendel/spark
4https://github.com/locationtech/spatial4j
5https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
6https://www.eclemma.org/jacoco/

tests calling them, and count of the number of times the

profiler detected them on the call stack) is available at the URL

provided at the end of the paper. The total number of target

methods found for each project were: jCodec: 477; spark: 56;

spatial4j: 77. For these targeted methods, test case coverage

was 88% for jCodec, 90% for spark, and 93% for spatial4j.

We also report the neutral variant rates (NVRs) as defined

in Equation 1.

NV R =
#ProgramV ariantsPassingAllTests

#ProgramV ariantsThatCompile
(1)

Our experiments followed three stages, outlined below.

A. Enumeration

We begin with an enumeration: for every possible insertion

point in the target methods identified by the profile, we apply

each of the three new edits B (insert break;), C (insert

continue;) and R (insert return;). The resulting three

variants of the code are then compiled, and if this is successful,

the unit tests that exercise the respective target methods are

called. We report the number of edits generated for each

project, as well as the fraction of edits that compiled, and

the fraction of those that then also passed the tests.

The other three proposed new edits, Bif , Cif and Rif , were

omitted from this stage because the possible conditions (choice

of variable, and choice of comparison) meant the search space

was excessively large for an exhaustive exploration.

B. Random Sampling

For each of the 6 edit types, 10 000 instances of the edit

were sampled uniformly at random, over the space of all target

methods identified by the profiler. Again, these were compiled

and run on the corresponding unit tests, and we report the

number of edits generated for each project, as well as the

fraction of edits that compiled, and the fraction of those that

then also passed the tests.

C. Local Search

As a proof-of-concept, once the sampling was completed,

we were able to identify target methods with a relatively high

neutral variant rate. Such regions were termed plastic in [16];

parts of the program where changes are less likely to cause

test failures and so are more amenable to editing.

We rank-ordered the target methods according to the results

from the profiler (i.e., most often called during testing, and

thus potentially fruitful areas to achieve speed up). From

this list, we omitted any target methods where no neutral

variants were generated during the sampling process (i.e. those

methods where edits tended to break something). From the

resulting list, we then took the top 5 methods and applied a

simple hill-climbing algorithm.

The hill-climber starts with an empty patch. At each itera-

tion it chooses at random to either remove an edit chosen at

random from the patch, or add an edit to the patch, sampled at

random from the potential insertion points and the 6 edit types

TABLE I: Results of enumeration experiments. Each type of

edit was applied to all possible insertion points in the target

methods; count gives the total number of edits applied.

Project Edit Count #Compile CR% #Passing NVR%

jCodec
B 6604 555 8.4 209 37.7

C 6604 555 8.4 527 95.0

R 6604 1045 15.8 678 64.9

spark
B 694 29 4.2 25 86.2

C 694 29 4.2 28 96.6

R 694 64 9.2 57 89.1

spatial4j
B 723 19 2.6 10 52.6

C 723 19 2.6 16 84.2

R 723 44 6.1 40 90.9

proposed here plus the replace/delete/copy/swap statement

edits provided with Gin. The resulting patch is then evaluated

by compiling, then running it 10 times on the relevant unit

tests. If the modified code fails to compile, or the average

run time does not represent an improvement, it is discarded.

Otherwise, the patch is retained. The procedure repeats until

1000 patches have been evaluated.

A warm-up run of 10 repeats of the test suite for the target

program was carried out before the local search runs as an

attempt to reduce uncertainty in the run times due to memory

caching.

IV. RESULTS: ENUMERATION

The results of the enumeration experiment are given in

Table I and summarised in Figures 2 and 3. The compilation

rates for the 3 simpler edits (B, C and R) are low across all

projects, never exceeding 16%. R is consistently higher than

the other two; given that a return can appear anywhere within

a void method’s body whereas break and continue have

a narrower range of possible locations, this seems reasonable.

The low compilation rates can also be partly attributed to Java

failing to compile where ‘unreachable code’ is detected, such

as after a return statement.

There is no surprise that compilation rates for B and C
are the same: the only situation where break is allowed, and

continue is not, is in a switch statement (and none of the

target methods contain switches).

Of the edits that compiled successfully, a large fraction

passed the unit tests (in fact, the majority for all except B in

jCodec). This is similar to the neutral variant rates in previous

work [16], where for the three traditional operators (including

delete) NVRs were between 15.7% and 30%, while for the

three proposed operators in the work (i.e., loop flip, add

method invocation and swap subtype), the rates were

between 58% and 73%.

These results show that there is some promise in edits

that insert break, continue and return statements; where

compilable code results from their insertion, it seems likely to

still pass the tests.

V. RESULTS: SAMPLING

The results for the sampling experiment are given in Ta-

ble II. As there are 10 000 edits of each type, there is some

0

5

10

15

20

Break

C
ontinue

R
eturn

Edit Type

%

(a) jCodec

0

5

10

15

20

Break

C
ontinue

R
eturn

Edit Type

%

(b) spark

0

5

10

15

20

Break

C
ontinue

R
eturn

Edit Type

%

(c) spatial4j

Fig. 2: Enumeration: % of edits that compiled

0

25

50

75

100

Break

C
ontinue

R
eturn

Edit Type

%

(a) jCodec

0

25

50

75

100

Break

C
ontinue

R
eturn

Edit Type

%

(b) spark

0

25

50

75

100

Break

C
ontinue

R
eturn

Edit Type

%

(c) spatial4j

Fig. 3: Enumeration:% of edits that produce neutral variants;

i.e., those that compiled that then passed all unit tests

0

20

40

60

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(a) jCodec

0

20

40

60

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(b) spark

0

20

40

60

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(c) spatial4j

Fig. 4: % of 10 000 edits of each type that compiled

0

25

50

75

100

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(a) jCodec

0

25

50

75

100

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(b) spark

0

25

50

75

100

Break

BreakW
ithIf

C
ontinue

C
ontinueW

ithIf

R
eturn

R
eturnW

ithIf

Edit Type

%

(c) spatial4j

Fig. 5: Neutral Variant Rate: % of edits that compiled that

passed all unit tests

TABLE II: Results of sampling experiments. 10 000 of each

edit type was applied to each project, distributed uniformly at

random over all target methods. #Unique shows the number

of unique edits of each type; the other counts and percentages

are with respect to the full 10 000 edits including duplicates.

Project Edit #Unique #Compile CR #Passing NVR

jCodec

B 3830 816 8.2 363 44.5
C 3845 863 8.6 839 97.2
R 3911 1827 18.3 1352 74.0
Bif 8364 2516 25.2 1528 60.7
Cif 8325 2430 24.3 1760 72.4
Rif 8380 5582 55.8 3668 65.7

spark

B 656 486 4.9 413 85.0
C 663 470 4.7 460 97.9
R 665 1526 15.3 1461 95.7
Bif 2141 810 8.1 632 78.0
Cif 2126 750 7.5 623 83.1
Rif 2175 2573 25.7 2238 87.0

spatial4j

B 645 152 1.5 93 61.2
C 635 130 1.3 121 93.1
R 642 431 4.3 408 94.7
Bif 3595 318 3.2 217 68.2
Cif 3715 335 3.4 263 78.5
Rif 3669 1343 13.4 963 71.7

oversampling of the space (especially for the three simpler

edits where the full space is less than this number). The

number of unique edits among the 10 000 of each type is given

in the table. The figures for #Compile and #Passing, and the

corresponding percentages, are with respect to the full 10 000.

Note that the figures for break and continue edits are not

quite equal here (compared to the enumeration results) due to

random sampling variation.

These results show that the main obstacle still seems to be

passing compilation; if an edit results in code that compiles,

it will also often pass all unit tests. The compilation rates are

higher for Bif , Cif and Rif edits than for their equivalents

without the if: typically around a third more of the edits

compile. As noted earlier, this is because Java will fail to

compile where ‘unreachable code’ exists; the presence of the

if allows following code to be reached conditionally. The

higher compilation rates then underpin higher numbers of the

if edits passing the unit tests. Despite the higher numbers

of edits passing the tests, the NVR (percentage of compiling

edits that pass tests) actually decreases slightly for the if

edits in most cases. However, NVR remains high for all

edits on all projects: 44.5% for B on jCodec and over 60%

for all other edits and projects. These high figures reflect

those seen in [16] for other insertion types (including if

statements) but that work found much lower rates for insertion

of returns. A possible explanation here is that we are only

adding void return statements, which simply skip some

part of execution. In [16], the experiments considered insertion

of return statements with a type; returning an incorrect value

being a possible cause of test failure.

The key points to draw from these results are as follows.

(1) Edits that insert break, continue and return statements

have higher compilation rates when embedding the statement

in an if. (2) All six edits have a high Neutral Variant Rate

(>44.5%), offering a potentially ripe source of performance

improving edits.

A. Sampling run times on jCodec7

The sampling experiment was repeated for jCodec. 7000

patches were generated: each patch contained one edit, sam-

pled uniformly at random from the 6 proposed edits, and the

possible locations for each. These were reduced to only those

for which the patched code compiled and passed the tests.

Each of these patches was then run on the unit tests 30 times;

after each repeat the original unpatched code was also run on

the same unit tests. It is hoped that by interleaving the runs

this way, any impact of caching etc. is minimised.

3509 of the 7000 patches compiled and passed the tests

(i.e. neutral variants). Of these, 1366 offered a significant

(i.e. t-test p < 0.05) decrease in run time over the original

code for the 30 repeats. 84 patches produced a significant

increase in run time. The mean percentage reduction in run

time for these patches was 15.1%. In terms of the specific edit

types (B, C,R,Bif , Cif ,Rif), the numbers of each offering a

statistically significant speedup were: 134, 8, 352, 166, 121,

585. So, all the operators appear to offer some potential for

speedup, and Rif appears the most fruitful.

VI. RESULTS: LOCAL SEARCH

Our final experiment is simply intended to show the po-

tential of these kinds of edits. We conducted a single run

of a hill-climber on each of the 5 target methods (the 5

methods ranked highest by the profiler for which more than

zero neutral variants were found during the sampling runs).

Here we focused on jCodec only as it had the highest numbers

of edits both compiling and passing the tests.

The methods targeted were those with IDs 1, 3, 4, 5, and 6

in the data sets provided via the URL at the end of the paper.

Specifically these are:

1) org.jcodec.scale.BaseResampler.resample

(Picture,Picture)

3) org.jcodec.codecs.h264.decode.

CoeffTransformer.idct4x4(int[])

4) org.jcodec.codecs.h264.decode.

MBlockDecoderBase.predictChromaInter

(Frame[][],MvList,int,int,int,Picture,

PartPred[])

5) org.jcodec.codecs.h264.decode.deblock.

DeblockingFilter.filterBlockEdgeVert(

Picture,int,int,int,int,int,int,int)

6) org.jcodec.codecs.h264.decode.

BlockInterpolator.getBlockChroma(byte

[],int,int,byte[],int,int,int,int,int,

int)

No improving edit was found in 1000 iterations of the local

search for target methods 1 and 5.

7The results in this section were obtained after acceptance of this paper

For method 3, speedup of 3.58% (final run time 64.5s for

10 repeats of the tests). This was a continue at the end of

a for loop and did not in practice do anything. For method

4, speedup of 3.88% (final run time 62.1s for 10 repeats of

the tests). This was also a continue, embedded within an

existing if statement, but at the end of that statement, which

in turn was at the end of a loop so not in practice having any

effect. For method 6, speedup of 4.05% (final run time 62.8s

for 10 repeats of the tests). The resulting patch consisted of

two edits, highlighted in Figure 6. The first of these does have

the effect of skipping loop iterations, although further analysis

is needed to understand its full impact. With a relatively small

improvement of run time it is possible this is still the effect

of random noise.

In practice these edits are only making small improvements

to the code run time; but this proof of concept run shows that

even a small scale run is able to find an edit that still passes

the tests for the class and is worth further investigation.

VII. RELATED WORK

Genetic improvement has proven to be a successful tech-

nique in finding test-suite adequate patches that lead to bug

fixes and various efficiency improvements [21]. Those patches

usually fall in the three types: copy, delete or replace, applied

to either source code, assembly or even binary code. The

choice of these three types has its origins in Genetic Pro-

gramming, the first search technique applied in GI. However,

a question arises whether more effective mutation operators

exist. Several researchers have looked into this issue by

proposing tuning parameters embedded in code [7], [15], or

replacement of Java Collections [5], [14]. In related, automated

program repair (APR) field, more targeted mutations have

been proposed, for example, borrowing from human-evolved

patches [9], [11], or programming language specific ones [12].

In the GI work to-date the most effective operator type has

been deletion. This has been observed in other fields. For ex-

ample, loop perforation has been used to achieve quick speed-

ups [18] (up to 3-fold), while producing up to 10% decrease in

output quality. This idea of approximation by weighing non-

functional properties of software against functional ones has

also been explored in work on reducing energy consumption

using genetic improvement [4]. For instance, 33% energy

reduction was achieved with loss of less than 4% of accuracy,

for one of the applications for the application test set used.

It is now well-established that software is not fragile [22],

[23]. In fact, there exist a high amount of program variants that

are neutral with regards to the given test suite. This observation

led to automatic exploration of these plateaus in the program

search space in the hope of finding software that improves

upon non-functional properties. The question is how to find

such improvements efficiently. Given the success of the delete

operator we propose here six new edits.

The closest to our work is the work by Harrand et

al. [16]. They investigate the search space of program variants

achieved with the traditional mutation operators. Based on

these observations they propose three new operators: add

method invocation, swap subtype and loop flip .

These achieve, accordingly, 66.29%, 58.26%, and 73% neutral

variant rates. They have, however, not investigated the impact

of these on non-functional properties, such as run time.

VIII. CONCLUSIONS

We have proposed six new edit types for Genetic Im-

provement of Java software, based on the insertion of

break, continue and return statements. 10 000 randomly-

generated instances of each of these edits were applied to three

open-source applications taken from GitHub.

There are several key findings: (1) compilation rates for

the inserted statements without surrounding if statements

are low (1.5–18.3%). (2) Edits that insert break, continue

and return statements have higher compilation rates when

embedding the statement in an if (3.2–55.8%). (3) All six

edits have a high Neutral Variant Rate (>44.5%), offering a

potentially ripe source of performance improving edits. We

note here that all these results are with respect to the existing

test suites for each project.

Furthermore, a preliminary experiment based on local

search showed how these edits might be used in practice.

Several future research directions naturally follow these

findings. An obvious extension to the edits would be to have

non-zero return values for the if conditions. This is, however,

non-trivial: it cannot simply be a uniform sampling in the

range of the variable’s type as in many cases this is likely

to be outside the likely values the variable will take. A related

question here is how to choose a suitable distribution from

which to sample. The R and Rif edits could also check the

return type of methods and add a return variable to improve

compilation rates (though as per [16] this may actually reduce

the NVR). More interesting is a static analysis of the code

to better inform the creation of the edits: limiting insertions

to valid locations (though this is possibly more effort than

just trying to compile them). In this context it would also be

interesting to find the trade-off between only generating valid

insertions and just testing by compilation (somewhat akin to

handling infeasible solutions in combinatorial optimisation).

ACKNOWLEDGMENTS

This work was partially funded by a grant from the Carnegie

Trust (TOGA: Towards Grammar-Aware Operators for Genetic

Improvement of Software) and the EPSRC (grant number

EP/P023991/1).

DATA ACCESS STATEMENT

Data sets generated in this work can be found at http://hdl.

handle.net/11667/146. The operators have been integrated with

the gin tool at https://github.com/gintool/gin.

REFERENCES

[1] J. Petke, B. Alexander, E. T. Barr, A. E. I. Brownlee, M. Wagner,
and D. R. White, “A survey of genetic improvement search spaces,”
in Proceedings of GECCO Companion, 2019, pp. 1715–1721.

1 private int invert(int startOff, int level, int prefix, IntArrayList values, IntArrayList

valueSizes) {

2 int tableEnd = startOff + 256;

3 values.fill(startOff, tableEnd, -1);

4 valueSizes.fill(startOff, tableEnd, 0);

5 int prefLen = level << 3;

6 for (int i = 0; i < codeSizes.length; i++) {

7 if ((codeSizes[i] <= prefLen) || (level > 0 && (codes[i] >>> (32 - prefLen)) != prefix

))

8 continue;

9 int pref = codes[i] >>> (32 - prefLen - 8);

10 int code = pref & 0xff;

11 int len = codeSizes[i] - prefLen;

12 if (len <= 8)

13 if (len == 0)

14 continue;

15 for (int k = 0; k < (1 << (8 - len)); k++) {

16 values.set(startOff + code + k, i);

17 valueSizes.set(startOff + code + k, len);

18 }

19 if (code <= 0)

20 continue;

21 } else {

22 if (values.get(startOff + code) == -1) {

23 values.set(startOff + code, tableEnd);

24 tableEnd = invert(tableEnd, level + 1, pref, values, valueSizes);

25 }

26 }

27 }

28 return tableEnd;

29 }

Fig. 6: Best patch found for target method 6.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software

Eng., vol. 38, no. 1, pp. 54–72, 2012.

[3] W. B. Langdon and M. Harman, “Optimizing existing software with
genetic programming,” IEEE Trans Evol Comp, vol. 19, no. 1, pp. 118–
135, 2015.

[4] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Proceedings of GECCO, Madrid, Spain,
2015, p. 1327–1334.

[5] M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr, “Darwinian data
structure selection,” in ESEC/SIGSOFT FSE. ACM, 2018, pp. 118–128.

[6] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDA DNA analysis software with genetic programming,” in Proc. of

the GECCO, GECCO. ACM, 2015, pp. 1063–1070.

[7] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirs-
dottir, “Fixing bugs in your sleep: how genetic improvement became
an overnight success,” in GECCO, Companion Material Proc. ACM,
2017, pp. 1513–1520.

[8] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proc of the 22nd ACM SIGSOFT International

Symp on Found of Softw Eng, 2014, pp. 306–317.

[9] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE. IEEE Computer Society,
2013, pp. 802–811.

[10] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” EMSE,
vol. 20, no. 1, pp. 176–205, 2015.

[11] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, 2017, pp. 727–739.

[12] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Trans on Softw Eng, 2018.

[13] J. Petke, “New operators for non-functional genetic improvement,” in
Proc GECCO Companion. ACM, 2017, pp. 1541–1542.

[14] A. E. I. Brownlee, N. Burles, and J. Swan, “Search-based energy
optimization of some ubiquitous algorithms,” IEEE Trans. Emerging

Topics in Comput. Intellig., vol. 1, no. 3, pp. 188–201, 2017.
[15] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep parameter

optimisation,” in GECCO. ACM, 2015, pp. 1375–1382.
[16] N. Harrand, S. Allier, M. Rodriguez-Cancio, M. Monperrus, and

B. Baudry, “A journey among java neutral program variants,” Gen Prog

and Evol Mach, vol. 20, no. 4, pp. 531–580, 2019.
[17] S. Mittal, “A survey of techniques for approximate computing,” ACM

Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.
[18] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-

nard, “Using code perforation to improve performance, reduce energy
consumption, and respond to failures,” 2009.

[19] D. R. White, “GI in no time,” in Genetic and Evolutionary Computation

Conference, Berlin, Germany, July 15-19, 2017, Companion Material

Proceedings, P. A. N. Bosman, Ed. ACM, 2017, pp. 1549–1550.
[Online]. Available: http://doi.acm.org/10.1145/3067695.3082515

[20] A. E. I. Brownlee, J. Petke, B. Alexander, E. Barr, M. Wagner, and
D. White, “Gin: Genetic Improvement Research Made Easy,” in Proc. of

the Genetic and Evolutionary Computation COnference, Prague, Czech
Republic, 2019, pp. 985–993.

[21] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, IEEE Trans Evol Comp, vol. 22, no. 3, pp. 415–432,
2018.

[22] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” Genetic Programming and Evolvable Machines,
vol. 15, no. 3, pp. 281–312, 2014.

[23] W. B. Langdon and J. Petke, “Software is not fragile,” in First Complex

Systems Digital Campus World E-Conference 2015. Springer, 2017,
pp. 203–211.

