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Abstract

Timetabling is a highly complex problem which is part of the wider field of

scheduling,  a  subject  of  extensive  research  over  the  past  half-century.

Scheduling is broadly defined as “the problem of the allocation of resources

over time to perform a set of tasks” [1] and is a prominent example of a set of

notoriously  difficult  NP-hard,  constrained,  combinatorial  optimisation

problems.

There are several different sub-categories of timetabling; within a university

setting (the scenario for which sample data is readily available to this project)

it can be divided into the distinctly different problems of timetabling the exam

diet and normal class delivery. This project conducts an investigation into the

problem  of  class  timetabling  and  attempts  to  reproduce  three  different

approaches to solving it. Being classed as NP-hard, no deterministic algorithm

can be devised to generate a timetable within a reasonable time. This problem

is a good candidate for the use of genetic algorithms (GAs);  these will  be

examined in detail before proceeding to a detailed analysis of timetabling and

the application of two different GAs to it. An extension of genetic algorithms

known as memetic algorithms is also investigated and applied to the problem.

Following this,  the algorithms are optimised and a comparison is  made of

them.
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1. Introduction

1.1. Manual timetabling

Timetabling is a part of the large field of scheduling. It can be divided into

several different problem categories of which exam timetabling and lecture

timetabling are prominent examples. It is classed as a problem of NP-hard

complexity,  effectively  ruling  out  efficient  automation  by  traditional

deterministic algorithms.

Even finding a timetable for a modest number of rooms and classes can be

highly complex. At the School of Computing within RGU there are 4 modules

per  semester  per  course and  7  undergraduate  courses.  Additionally, each

module is divided into around four sessions (individual lectures, tutorials or

labs). This problem is coupled with the inclusion of other events (postgraduate

courses, meetings etc.) and a variety of other constraints such as room size

and allowance of suitable break times.

Traditionally, timetables have been constructed by hand and then modified as

appropriate each year (A process known as local repair). This is a laborious

process and it would be desirable to automate it in some way.

In this project an attempt is made to follow the work done [4, 16, 25] on using

Genetic  Algorithms  (GAs)  and  Memetic  Algorithms  (MAs)  to  solve  the

timetabling problem; the stochastic nature of both types of algorithm gives

them potential to perform well in this area. Three different implementations (2

GAs, 1 MA) are created, optimised and compared, allowing an observation to

Page 7 of 82
 



Alexander Brownlee 0002598 Honours Project

be  made  on  which  of  the  three  candidates  is  the  best  approach  to  the

problem.

1.2. Alternative Approaches to the Timetabling Problem

1.2.1. Overview

There are many different approaches to timetabling. Genetic Algorithms have

been shown to work well when applied to other scheduling problems [12], and

work has already been done [3]  on using Genetic  Algorithms to  solve the

timetabling problem. This can be improved by using steady-state GAs [14]

and an extension of GAs called memetic algorithms [4, 25]. Solutions have

also  been  demonstrated  using  tabu  search,  tiling  algorithms,  simulated

annealing, agents and other algorithms. Often the problem is interpreted as a

graph colouring  problem [17],  although some other  approaches have also

been taken (such as in [25]). Before moving on to look at genetic and memetic

algorithms in detail, it is worth looking at some of these alternatives.

1.2.2. Tabu Search

Tabu search is an algorithm which makes extensive use of local search [20].

As it proceeds through the search space it avoids local minima (the major

problem  associated  with  local  search  algorithms)  by  modifying  the  set  of

neighbours around the currently selected solution. The way it achieves this is

by building up a tabu-list of already visited solutions – this can also contain

solutions  not  visited  but  undesirable  in  some  way  –  these  solutions  are
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ignored during the search. It has be shown to work well with problems like the

timetabling  problem  [8,  19]  but  has  also  been  outperformed  by  genetic

algorithms in some studies [18].

1.2.3. Tiling Algorithms

A tiling algorithm collects the classes to be scheduled into clusters known as

tiles. Each of these tiles hold classes which can run simultaneously; these

tiles are then assigned times using a separate search algorithm of some kind.

This approach was used with some degree of success in [10],  but only in

situations such as that in a high school where several classes of students sit

the same subject simultaneously. These groups of classes are clustered into

the tiles for scheduling – this does not tend to happen in a university timetable

where cohort groups sit far more varied courses.

1.2.4. Simulated Annealing

Simulated annealing [12]  is  an optimisation technique which simulates the

behaviour  of  metal  atoms  during  the  process  of  annealing  (a  treatment

involving extremes of temperature). A temperature is set which reduces over

time;  this  temperature  is  used to  determine the  maximum size  of  random

leaps it  makes within  the  search space (mutating  candidate timetables  by

varying amounts). It has been used in conjunction with GAs for the timetabling

problem, demonstrated in [11].
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1.2.5. Agents

Multi Agent Systems, such as that described in [9], employ several software

agents communicating with each other working towards different goals. Each

agent can be set up to view the timetable from a different perspective and

amends it until a stable timetable satisfying all agents is found.

1.2.6. Why Choose GAs Over the Other Approaches?

Based on the literature study, the three approaches examined in this study will

be two variants of a genetic algorithm and a memetic algorithm. This is largely

because of previous experience in Genetic Algorithms and because of the

relative similarity of the three approaches. This will allow recycling of code and

reduce the implementation phase of the project, allowing more time for the

optimisation and comparison stages.
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2. Background Theory

2.1. Genetic Algorithms

Before proceeding to the practical details of implementation it is appropriate to

look at the theory of genetic and memetic algorithms in some detail.

2.1.1. History and General Principals

Genetic algorithms (GAs) are a specialisation of evolution programs, based on

the  principals  of  natural  selection  and  random  mutation  from  Darwinistic

biological  evolution.  They were formalised in 1975 by John Holland at  the

University of Michigan and have been growing in popularity since, particularly

for solving problems with a large irregular search space of possible solutions

[13].  The  basic  concept  of  a  GA  is  that  a  population  of  individuals  is

maintained; each of these holds a chromosome which encodes a possible

solution to the problem being solved. With the passing of time the members of

the population interact and their content is passed on through generations of

new individuals. Fitter solutions (those closer to the optimum) are more likely

than their  poorer counterparts to “breed”,  passing on parts of  their  genetic

material (parts of their solution to the problem) to the individuals (“offspring”)

in the next generation.

The first GAs all used a binary encoding scheme – chromosomes were simply

strings of 0s and 1s. To illustrate, say a solution consists of a set of numeric

parameters (range 0-15) to be entered into  some engineering process.  To
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encode the sequence of values (2,5,12,7,1), each value would be converted

to its binary equivalent and the set of values simply concatenated together to

form 0010010111000001. (Each value in this string is known as an allele) This

was  the  method  preferred  by  John  Holland  (their  inventor)  for  numerous

reasons  [13].  Alternative  encodings  have  since  been  shown  to  offer

comparable if not better performance in some situations [2, 7, 13] – GAs now

exist where each chromosome is a string of bits, integer or real numbers or

other  values.  Far  more  complex  structures  such as  trees have also  been

shown to work well in certain situations [13].

There  are three major  operations involved in  evolving  the population  of  a

typical GA. In no particular order, these are selection, crossover and mutation.

2.1.2. Selection, Elitism and Steady State GAs

The method by which individuals are chosen to contribute material to the next

generation is known as selection. The aim is to give preference to individuals

of a higher fitness in the hope that they pass the elements which make them

better on to the next generation. This must be carefully balanced so as not to

allow suboptimal highly fit individuals to take over the population and wipe out

any useful information that may be held by those of a poorer fitness (The

balance between these two goals is called the selection pressure). The initial

approach to this was a simple probability based system where the likelihood

of an individual reproducing directly corresponded to its fitness relative to the

rest of the population. This is known as Roulette Wheel Selection because its

Page 12 of 82
 



Alexander Brownlee 0002598 Honours Project

operation is similar to that of the selection of numbers on a roulette wheel.

This seems like a logical approach to take although in practice often performs

poorly because it  yields a high selection pressure.  This  means it  tends to

allow suboptimal fitter chromosomes take over the population before the high

fitness components of less fit individuals are allowed to spread. Attempts to

improve basic roulette wheel selection include the use of linear scaling (raw

fitness values are replaced with their relative rank) and stochastic universal

selection  (which  reduces  the  unpredictability  of  the  number  of  times  an

individual is selected). Both of these are covered in depth in [13].

Several other approaches to selection have been taken – one of the more

commonly  used  is  Tournament  Selection  [12].  Here,  two  individuals  are

selected at random and placed into a “tournament”. Simply, one of the two is

chosen  randomly  with  that  having  the  higher  fitness  is  given  a  higher

likelihood of being chosen. This has a lower selection pressure [13] allowing

the population to maintain a good diversity. It  also requires less computing

power  than  most  other  methods  by  only  using  three  random  number

generations and one comparison operation.

One other  approach is Boltzmann Selection [13].  This keeps the selection

pressure  low early  on  in  the  evolutionary  process,  keeping the  population

varied and giving all individuals a good likelihood of contributing to the final

solution.  The  pressure  is  then  increased  over  time,  encouraging  the

population to gradually converge to a highly fit solution. To achieve this, each

individual is given an “expected value” ExpVal(i, t) generated from a formula
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[13] such as that illustrated in figure (i). The expected value can then be used

in place of raw fitness in a scheme such as roulette selection. In this example,

f(i) is the fitness of the individual, T is the current temperature used to set

selection pressure and <>t is the average over the population at time t. The

effect of this formula is that as the temperature T decreases, the difference in

expected  value  between  highly  fit  and  poor  chromosomes increases  (this

leads to an increase in selection pressure). The value of T is decreased slowly

with the passing of time, possibly as a function of the number of generations

passed or the current best fitness found.
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This idea can be expanded to reach what is known as a steady-state genetic

algorithm [13]. In this situation the population is not replaced each generation

– only a few chromosomes are taken out and replaced (normally a selection

of the poorest ones). This is equivalent to having a large number of elites and

is closer to the overlap of generations found in biological populations.

2.1.3. Crossover / Recombination

It is useful to think of chromosomes as being made up of several component

parts, or genes. These are groups of alleles which encode a particular feature

of the chromosome; just as a particular gene in an animal could encode skin

or eye colour, a gene in a GA represents one aspect of  the solution. [13]

Crossover  is  the  process  by  which  genes  and  particular  combinations  of

several  genes  (know  as  schemas)  from  one  chromosome  can  be

reassembled  with  genes  from  another  to  generate  new  offspring

chromosomes  (Just  as  parents  contribute  different  parts  of  their  genetic

makeup to their children). The hope is that this process may combine a good

schema from one average fitness chromosome with a different good schema

from another chromosome to produce a new higher fitness chromosome.

The original  approach to  this  was to  select  a  random point  [7,  13]  in  the

chromosome  and  swap  the  content  of  the  chromosomes  thereafter.  This

would produce two offspring, as illustrated is figure (ii).
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Chromosome A: 1 1 1 0 0 1 1 0
Chromosome B: 0 1 0 1 1 1 0 1

After crossover at the fourth bit:

Offspring A: 1 1 1 1 1 1 0 1
Offspring B: 0 1 0 0 0 1 1 0

Alexander Brownlee 0002598 Honours Project

In  addition  to  varying  the  crossover  rate,  the  number  of  points  at  which

crossover occurs during the chromosome copying can also be varied. [13]

This can offer a large improvement over the one-point crossover previously

described. In the example above, one point crossover will never produce a

child whose first bit and last bit are either both 0s or both 1s. This would be

allowed to happen if there were two points of crossover, where only a portion

in the middle of the chromosomes would be swapped between A and B. With

two point crossover there is also nothing to stop the points occurring at the

same location, effectively returning to 1 point of crossover and allowing the

offspring that it makes possible to still occur. Uniform crossover [7, 12] is an

extension of  this  idea which takes each allele  in the child from one of its

parents at random. This works well in situations where the relative positions of

alleles is less important but  some researchers remain sceptical  because it
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ignores any schemas contained in the chromosomes [13]. Uniform Crossover

can be adapted to Fitness Based Scan crossover [6] in which the alleles are

to  be  passed  on  are  selected  with  a  probability  related  to  each  parent’s

fitness. 

Chromosomes made up of a string of integers or real values can of course still

employ the standard crossover although this does not extend to some of the

more exotic encodings such as trees. One opportunity which the use of a

different encoding yields is the chance to develop entirely different crossover

operators  in  addition  to  or  as  a  replacement  of  the  standard  one.  One

example is the Average Crossover operator outlined in [7]. This takes an allele

from the same position in both parents, and the resulting child allele is the

average of these two. This could also be extended to take in more parents,

and  can  also  have  a  weighting  assigned  to  one  of  the  parents  when

calculating the average (either chosen randomly or based on fitness) [2]. One

problem with this approach is that it tends to guide alleles to the midpoint of

their range and does not favour extreme or near-boundary values which are

often found in optimum solutions. This said, it has also been shown to work

well in some limited situations [7].

A further crossover operator is Heuristic Crossover. [6, 12]. This operator uses

the fitness function to  guide the search direction and differs to  the others

Page 17 of 82
 

Figure iii

 [12]



Alexander Brownlee 0002598 Honours Project

outlined in that it may not result in the successful creation of an offspring. A

new chromosome x3 is created using the formula in figure iii:

where r is a random number between 0 and 1, and parent x2 is not worse

than x1. Occasionally this will produce an offspring with allele values out of

the required range. In this case the process can either be repeated with a new

random number or return with no new chromosome generated.

It is because of these alternative versions of crossover that the operator is

perhaps better known now as recombination – the process of recombining the

components of a chromosome.

The reason that the crossover operation is useful  to a GA is still  not fully

understood. As well as recombining “good” alleles it can also be said to be a

macro-mutation  operator  [13].  The  offspring  generated  by  a  crossover

operation can be vastly different from its parents (for example 00000000 and

11111111 crossed at bits 2 and 6 giving 01111000), resulting in exploration of

an entirely different part of the search space. In addition to this, if crossover

occurs at a point in the middle of a group of alleles encoding a numeric value

a different kind of mutation occurs. This is illustrated by the example given in

Figure (iv).
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Chromosome A: 1 0 1 1 1 0 1 0 (values 11, 10)
Chromosome B: 0 1 1 1 1 1 1 0 (values 7, 14)

When these are crossed over at allele 2 the following 
offspring are generated:

Offspring A: 1 1 1 1 1 1 1 0 (values 15, 14)
Offspring B: 0 0 1 1 1 0 1 0 (values 3, 10)
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The new values of the first number being represented are much different to

what they were. It might have been that the optimal value for this number was

10 and both 7 and 11 were previously close to this; they have now been far

removed from it.  While it  may be desirable to have an additional mutation

operator  allowing further  coverage of  the search space,  the uncontrollable

nature  of  this  mutation  may  be  unwanted.  This  effect  can  be  avoided  by

restricting  the  crossover  operation  to  “safe”  boundaries  between  encoded

values or by using an alternative encoding such as integers where groups of

alleles are not so closely related.

2.1.4. Mutation

Although crossover creates new individuals in the population, the mutation

operation is generally the primary means by which completely new areas of

the search space may be explored. During the creation of a new generation of

the  population  there  is  a  small  probability  that  the  new  offspring  will  be

mutated.  Mutation  simply  involves altering  the  offspring  randomly  in  some

way. Logically, one parameter that may be altered here is the rate at which

mutation occurs. Typically this is fairly low, with the probability of a mutation

occurring what creating an offspring being around 0.1.

Originally mutation of a chromosome meant that some of its alleles would be

randomly flipped from 0 to 1 and vice versa. (How many of the alleles are

changed in one mutation operation is another factor which may be varied)

Depending on the encoding this could have a large effect on fitness similar to
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that of crossover at a poor location, as it is possible that a bit being flipped is

the most significant bit of one of the encoded values. Similar to the mutations

problem with the crossover operator, it is feasible that a value whose possible

range was 0-15 could be mutated from a 2 to a 10 (0010 mutated to 1010).

This may well be desirable when looking to expand coverage of the search

space; likewise, we may want to be less destructive when altering what may

be a reasonably fit chromosome. To control this effect, the operator can be

restricted to only altering certain alleles within a chromosome or using Gray

encoding (instead of binary, the groups of bits for each number are ordered

such  that  changing  a  value  by  one  always  only  results  in  only  one  bit

changing).

As with crossover, other mutation operators have also been developed. Real

and  integer  value  encodings  allow  mutation  of  encoded  values  while  still

respecting  their  range.  As  described  in  [7],  integer  values  can  either  be

replaced by entirely new random values or can be crept a limited amount from

their current value. This could either be a fixed step up or down, a random

bounded value up or down, or something more sophisticated such as the use

of a convex space function [2].

2.2. Memetic Algorithms

A Memetic Algorithm (MA) is a specialised version of a Genetic Algorithm –

although they are a reasonably simple extension of the GA concept they are a

reasonably new area of research. Based on the concept of memes rather than

genes, it  employs a heavy use of local  search in addition to the standard
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genetic  operations.  Like  genes,  memes  are  passed  down  through  the

generations as the evolutionary process runs. The difference lies in the idea

that memes can be altered at each generation as they are passed on [4].

In practice this is achieved by the addition of a local search to the normal GA

operators.  Whenever  a  new chromosome is  created  (through  mutation  or

recombination) a local search is performed on it  to push it  towards a local

optimum. While this local search does require some extra processor time, it is

hoped that it will reduce the search space of the GA to the subspace of local

optima  and  that  this  reduction  will  lead  to  an  overall  performance

improvement.
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3. GAs and MAs Applied to Timetabling

3.1. GAs and Timetabling

One of the most obvious implementations is a simple GA which works directly

on candidate timetables, as demonstrated in [16]. Each chromosome would

be large, holding an allele for each class to schedule. The GA would assign a

room and timeslot to each class (giving each allele a large range of possible

values)  and  its  fitness  would  be  a  function  of  the  number  of  constraint

violations.  This  places  a  heavy  onus  on  the  fitness  function  to  guide  the

search to  a working timetable;  possible  constraint  violations would include

assignment of classes to undersized rooms or rooms of the wrong type in

addition to clashes between classes. This is one of the GAs that studied in

this project – for brevity this will be referred to as Algorithm A.

An alternative method would be to have the Genetic Algorithm only assign the

timeslots to modules, as used in [25]. This considerably reduces the search

space and in turn speeds up the algorithm. Modules can then be assigned to

rooms using a greedy algorithm based on room and class size. The specifics

of this greedy algorithm will be described in depth later. This method also has

the advantage of guaranteeing that modules will only be placed in rooms of

the correct type and adequate size; this method of “hard coding” the room

size/  type constraint  into the algorithm reduces both the complexity  of  the

fitness function and the workload of the GA itself (A large number of infeasible

timetables have been removed from the search space). This will lead to an

overall  improvement  in  performance  if  the  processing  cost  of  the  greedy
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algorithm is less than the reduction in processing cost of the GAs. This type is

also studied by this project, referred to as Algorithm B (For reasons outlined in

the  discussions  on  crossover  and  mutation,  both  will  use  an  integer

encoding).

An alternative to these approaches is to use the GA to create a permutation of

classes to schedule, which is then passed to another algorithm. This algorithm

would then assign both timeslots and rooms to classes in the order presented

to it by the GA. In the instance the GA would be simply sorting the classes into

an ordering which makes them easy to schedule. Given that the focus of this

project is the study of a practical implementation of a GA – and that the GA

would have only a small role and this “other” algorithm would be doing most of

the work – this approach will not be looked at in more detail here.

3.2. MAs and Timetabling

There has been significant research covering the application of MAs to the

timetabling problem. One such implementation [25] has been shown to work

well on a similar problem to that of the School of Computing, specifically the

scheduling classes at Napier University. Memetic Algorithms have also been

used to solve the similar problem of exam timetabling [4].

It is quite possible to base an MA on the Algorithm A GA described earlier; in

fact work was started on such an adaptation (Algorithm C). This would have

added a local  search element to  the original  GA by repairing clashes and

room size/type constraint violations as they were found. A study of literature
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however  leads  one  to  conclude  that  the  simple  implementation  used  in

Algorithm A will not perform well and is useful for inclusion because it is the

most obvious implementation. This considered, Algorithm C was unlikely to

yield a significant improvement and was deemed unnecessary for the project.

This  led  to  its  abandonment  in  favour  of  concentration  on  the  other

implementations.

Basing the MA on the second GA described previously (that using the greedy

algorithm  to  assign  rooms),  we  have  an  algorithm  purely  responsible  for

assigning  timeslots  to  classes  such  that  they  do  not  violate  the  time

constraints  placed  on  them  (Room  assignment  being  left  to  the  greedy

algorithm). The major consideration is how to design the local search.

Local  search  in  [25]  is  based  around  the  permutation  approach  for

implementation, but the implementation in this project is a graph colouring

algorithm  and  so  this  cannot  be  adopted.  Based  on  [4],  an  alternative

possibility is essentially a hillclimbing method. This involves looping through

each  of  the  modules,  adjusting  the  timeslot  for  each  and  reapplying  the

greedy  algorithm  to  assign  rooms.  This  can  either  be  a  random  timeslot

reassignment, a slight adjustment or a timeslot chosen so as not to clash with

any neighbours (the last of these being that chosen for this implementation).

The  change  in  fitness  can  then  be  calculated  and  if  there  is  an  overall

improvement, the process is repeated. A factor to consider here would how

many  unsuccessful  attempts  to  improve fitness would  be allowed to  pass

before it could be concluded that there is no further gain to be made. The
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adjustment  to  each  timeslot  can  be  a  slight  adjustment  up  or  down,  a

completely  new  random  value  or  a  value  chosen  to  not  clash  with  any

neighbours. This will require a considerably faster than normal fitness function

because the nature of local search with hillclimbing requires a large number of

fitness evaluations.  An  ideal  solution  would  be to  calculate  the  change  in

fitness which altering a single module’s timeslot will cause and add or subtract

this from the previously calculated overall fitness as appropriate.

This final implementation is known within the project as Algorithm D. With the

omission of C, there are three algorithms to implement and compare. The

practical implementation of these will be examined shortly.
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4. Practical Implementation

4.1. Practicalities of the Problem

The first stage of the project was a literature study, taking a several weeks.

This covered genetic  and memetic  algorithms and previous work done on

automated generation of timetables.

Having studied the literature on past work in the area, several decisions on

the design of the algorithms could be made. The aim of the project is to study

different  implementations  of  genetic  algorithms  applied  to  the  timetabling

problem. The three algorithms to be implemented are the two GAs and the

MA previously described and referred to as algorithms A, B and D.

4.1.1. Constraints

From study of previous work done on timetables [4, 16, 19, 25], analysis of the

sample  data  and  consultation  with  the  Roger  McDermott  (School  of

Computing  timetabler),  several  possible  constraints  on  any  generated

timetables  have  been  found.  These  can  be  broadly  categorised  into  hard

constraints (the breaking of which results in an infeasible timetable) and soft

constraints  (which  do  not  have  to  be  met,  but  which  lead  to  desirable

timetables when met).

The hard constraints being considered are:
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H1. All classes must be scheduled a room and time

H2. No clashes (at any one time, a lecturer has 1 class, a student has 1

class, and a room has 1 class in it)

H3. Room capacities not exceeded

H4. Correct  room  types  used  (lecturers  in  lecture  theatres,  labs  in

laboratories)

The soft constraints are:

S1. Classes should be scheduled within  preferred hours  (for  example,

omitting Wednesday afternoons)

S2. Distances  between  classes  minimised  (keep  cohorts  in  the  same

building over the course of a day where possible)

S3. Hour for lunch is allowed between the hours of 12 noon and 2pm

S4. Bunch classes into  groups (don't  leave huge gaps)  and try  not  to

have a single class in a day

S5. Try not to have a day or a long run of all lectures

Each  of  these  constraints  is  given  a  weight  to  allow  fine  tuning  of  the

algorithm, these weights being simply floating point values which reflect the

relative importance of the constraint against the others. Constraints H3 and

H4 are built in to Algorithms B and D; these both use a greedy algorithm to

assign rooms to classes which will either assign them valid rooms or no room

at all (resulting in a violation of H1 instead).
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The soft  constraint  S2 was not  implemented into  the fitness function;  this

required extra information relating to travelling distance to be incorporated into

the room data and this was not available.

The levels used for the weightings are somewhat arbitrary values and may be

adjusted if the resulting timetables are undesirable. Currently they are set so

that all hard constraints have an equal weighting of 1 and the soft constraints

all  have  an  equal  weighting  of  0.01.  Brief  experimentation  revealed  that

leaving the constraints of  each class (that is,  hard or soft)  at  equal  levels

yielded good results; further examination of this could be an area for further

study.

4.2. Class Structure

NB – UML class diagrams for the Timetable and GA are found in Appendix C.

4.2.1. The Requirements and Timeslots classes

The first stage in developing the algorithms was to build a structure in which

the components of the required timetable – the modules to schedule and the

cohort  groups and lecturers associated with  them – could be stored.  This

Requirements class holds sets (TreeSets, to speed in-order iteration of the

objects) of Lecturer, Cohort and Module objects, together with methods to add

lecturers and cohorts to modules and iterate over each of the sets. Each of

these  classes  is  basically  a  data  wrapper.  A  module  is  the  timetable

application is not a module in the sense of a group of classes; it is a single

Page 28 of 82
 



Alexander Brownlee 0002598 Honours Project

session within a module such as an individual lab or lecture. A Module object

holds the module number, an identifier to separate it from other parts of the

same  module,  the  size  and  type  of  room it  requires,  and  the  number  of

timeslots  it  occupies.  The  room size  required  is  initialised  to  zero  and  is

altered as the module is added to cohorts. Modules may be compared either

by identifier (the default sort order) or by room size required. The Cohort and

Lecturer objects are very similar, so much so that consideration was given to

making them both subclasses of a generic Person class, although this was

deemed unnecessary. Each object  of  these classes stores  a  set  (again  a

TreeSet) of modules with which the lecturer or cohort is associated, as well as

an identifier  (cohort  or  lecturer  name).  The modules  are  actually  wrapped

within the node objects from the Timetable class – these hold the time and

room assigned to that module making it a trivial task to construct a timetable

for an individual person given only the Cohort or Lecturer object (the use of

nodes rather than Module objects was a late improvement, discussed later).

They also have methods for retrieving this data and for comparing with each

other  alphabetically  by  identifier.  Cohorts  additionally  store  the  number  of

students they comprise of and when adding a module to a cohort this size is

also added to the room size required by that module.

The timeslots available to the timetable are stored in a dedicated Timeslots

class which also holds the rooms available to schedule modules into.  This

class provides methods for  iterating over  the rooms available,  determining

which timeslots are available and for changing the availability status of rooms

and timeslots. The reasoning for placing the timeslots in a separate class is to
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allow  the  reservation  of  particular  rooms/timeslots.  A possible  situation  in

which this would be required is when the school shares its rooms with another

and the other  school  has already reserved some of  the rooms at  specific

times. Due to time constraints the examination of this area of the timetabling

problem had to be omitted;  the option to allow it  had to be built  in to the

project from an early stage so was added before it became unnecessary.

4.2.2. The Timetable class

The next stage was to create a structure in which completed timetables could

be stored and evaluated – the Timetable class. As the problem is in essence a

graph colouring problem, a graph data structure is used to hold the timetable.

Each node in this graph represents a module to be scheduled, together with

the timeslot in the week that has been assigned to it and the room number.

Edges  link  together  nodes  (modules)  which  cannot  occur  simultaneously;

examples would be classes with a common lecturer or cohort. The timeslot

would  be  considered  to  be  the  node’s  colour;  thus  neighbouring  modules

running at the same time would indicate a clash.

In addition to methods for data access and assigning timeslots and rooms to

classes  this  class  also  has  a  method  to  compute  the  fitness  of  a  given

timetable.  It  achieves  this  by  totalling  the  number  of  violations  of  each

constraint, then multiplying these by their preset and adding them together.

Originally this value was then subtracted from 0, giving a fitness ranging from

a large negative number (many constraint violations) up to 0. This yields a
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high  selection  pressure  and  accordingly  was  found  to  give  a  poor

performance.  Following  discussion  with  the  project  supervisor,  this  was

replaced with the formula illustrated in figure (v). Here, v is the total number of

weighted  constraint  violations  –  this  function  yields  fitnesses from 0  to  1.

Given the weights discussed previously,  v is calculated by adding the total

number of hard constraint violations to 0.01 multiplies by the number of soft

constraint violations.

Counting  the  number  of  violations  of  each  constraint  was  delegated  to  a

number of helper methods. Counting the numbers of classes not assigned to

a timeslot or room is a trivial task. (This includes invalid assignments such as

room  size  exceeded  or  incorrect  type,  though  these  only  occur  with

chromosome type A, as the greedy algorithm in B and D guarantee a module

being assigned a valid room or none at all) It is achieved by simply iterating

over all  the nodes in the Timetable and counting those with null values for

timeslots  or  rooms.  Counting  the  number  of  clashes  is  also  reasonably

straightforward, and best demonstrated by the following algorithm:

1. For each node (class) in the timetable, repeat:
1.1. For each of the current node’s neighbours found

after the current node, repeat:
1.1.1. If  the  neighbour  has  been  assigned  a

timeslot  that  causes  it  to  overlap  with
the  current  node  (taking  the  starting
timeslot  and  the  length  of  both  into
account), increment the clash count by 1.

Step 1.1 needs a little explanation; if all of each node’s neighbours were to be

considered, we would count each clash twice. The nodes are all given index
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numbers so we can step through them in the same order each time – to avid

the doubling up effect  we simply look at neighbours which occur after  the

current node and not those before.

Originally  a  clash  was  detected  if  classes  were  scheduled  to  the  same

timeslot. However, this was invalidated once the ability for a class to be longer

than one hour (one timeslot) was added. Now the timeslot assigned to a class

is  the time at which it  starts,  it  then has another  number to determine its

length. A clash has occurred if neither of the following conditions is true:

 The current module finishes before the neighbouring module starts

 The current module starts after the neighbouring module ends

Counting the violations of soft constraints is considerably harder because they

evaluate the timetable from the perspective of cohorts and lecturers rather

than from that of the modules. Each lecturer and cohort is taken in turn, and

the timeslots and rooms allocated to each class they are associated with are

used to assemble their personal timetable. This may then be parsed to ensure

that modules are grouped well and occur at desirable times and sites. Any

violations are added to the totals.
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4.2.3. TimetableGUI class

A simple class to display the timetable in a more human-readable fashion was

required  to  demonstrate  that  the  created solutions  were  viable  timetables.

This class creates a grid showing a timetable for a week with a drop-down list

of all cohort groups and lecturers. Whenever the drop-down list is changed,

the Timetable object is parsed for all modules related to that particular cohort

or lecturer. This list is then used to build a standard weekly timetable grid.

The GUI is not extensively used in the project, merely serving as a debugging

tool more than anything else. A sample timetable display is given in figure (vi).

The GA and MA are well suited to an object-oriented implementation. Each

individual  in  the  population  is  represented  as  a  separate  object  of  a

Chromosome  class.  The  generic  Chromosome  class  is  largely  abstract,

simple requiring that each chromosome has methods for evaluating its fitness,

mutating itself and crossing itself with another chromosome of the same type.

Extending from this foundation, there is the IntegerChromosome class which

has alleles represented in an array of integers and methods for mutation and

crossover of  integer array values, with only the fitness calculation omitted.

This  is  then  extended  by  the  TTChromosomeA,  TTChromosomeB  and
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TTChromosomeD classes, corresponding to the algorithms A,B and D being

investigated.  Each  defines  the  number  and  range  of  the  alleles  to  be

appropriate to the particular algorithm being used (the number of alleles is the

number of modules to schedule, the range is large for type A and smaller for

types B and D as they only have to assign timeslots and not rooms as well). 

Each  of  these  chromosomes  also  defines  a  fitness  function.  Here,  the

particular  algorithm being  used  takes  the  allele  values  and  uses  them to

assign timeslots and rooms to the modules contained in a Timetable object.

The fitness function of  the Timetable object  is  then called to  compute the

Chromosome’s  fitness.  The  TTChromosomeD  class  also  extends  the

crossover and mutation methods to add the local search immediately after

those operations have been performed. Additionally, to reduce computation

cost the fitness function for each chromosome is only run the first time it is

called. After this the fitness values is stored in a variable and this is returned

as necessary. There is a Population class which holds the current generation

of chromosomes in an array. This holds methods for selection (which are the

same  regardless  of  chromosome  type),  and  makes  use  of  the  fitness,

crossover  and  mutation  methods  of  the  chromosomes  to  evolve  the

population. The core parts of the genetic algorithm outlined here were also

used in  a  previous work [2]  in  a  different  area of  GA research,  and were

incorporated into this work in a self-contained Java package. One of the aims

of this project is to build on and extend the knowledge gained during that

work; this is achieved in one way by building on work already done.
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4.2.5. GA Operators

Initially the selection operator used was tournament selection. Having been

previously  used  in  an  alternative  setting,  the  GA  package  also  contains

methods  for  performing  roulette  wheel  selection,  linear  roulette  wheel

selection and stochastic universal sampling (described earlier and covered in

detail in [13]). These did not perform well in initial tests and following the aim

of  the  project  to  expand  on  previously  gained  knowledge  of  GAs,  a  new

alternative  was  chosen  for  investigation.  This  is  the  previously  described

Boltzmann Selection, an attempt to vary selection pressure over course of the

evolutionary process.

When  specifically  mentioned  in  papers  found  during  the  literature

investigation,  previous  implementations  used  variants  of  the  standard

crossover  rather  than  arithmetic  methods.  Experimentation  also  showed

arithmetic crossover operator such as Average Crossover perform poorly in

timetable generation. This makes some sense – the assignment of modules to

specific timeslots is an ordering rather than a numeric problem. Thus timeslots

near  to  each  other  may  have completely  differing  impacts  on  fitness.  For

example, even if a module clashes with nothing at 9am and 1pm on a Monday

that does not mean that it will be free of clashes at 10am, 11am or 2pm. Thus

averaging the “good” values of 9am and 1pm together to give 11am will not

necessarily result in a fitness improvement (in fact it is possible that the “good”

values are overwritten by poorer ones). It follows that the traditional crossover

would perform well. In the above example assigning a value of either 9am or
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1pm  to  a  module  will  make  a  positive  contribution  to  the  chromosome’s

fitness;  both  of  the  offspring  generated  will  have  one  of  these  preferable

values. Given this, the plain crossover operator is used in the implementations

being tested.

The problems with numeric crossover also affect numeric mutation operators,

so one might think it would be advantageous to use a mutation operator which

yields random changes rather than anything more sophisticated based on a

mathematical formula (which would also require more processing time). That

said,  it  could be said that some timetables only need “tweaked” slightly to

become feasible  (that  is,  no hard constraint  violations).  This  could involve

making only slight mutations rather than large jumps – for example, changing

a start time from 2pm to 3pm. Later in the evolution process this would also

have the potential to improve timetables by shifting modules from long runs of

classes or  from occupying the lunchtime period.  Clearly this is an area of

uncertainty  that  needs further  investigation.  This  is  achieved by  using  the

Creep  Mutation  operator  [7],  in  which  mutations  can  alter  an  allele  by  a

random value up to a constant creep step. During the optimisation process for

the algorithms this creep step will  be one of the factors,  allowing the best

value (low values resembling a gentle creep, high values resulting in more

random jumps)  to  be  determined.  It  is  also  feasible  that  this  creep  value

should decrease over time to allow large jumps early on during evolution and

smaller jumps during the final tweaking of the timetable when soft constraints

become more important.  Variation of the creep step will  not be considered

here due to time constraints but is another possible area for future study.
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4.2.6. Greedy algorithm

Algorithms B and D employ the use of a greedy algorithm to allocate modules

to rooms once they have been assigned timeslots. This is a relatively simple

algorithm to implement.

Initially,  the  set  of  modules  for  one  particular  timeslot  were  sorted  into

descending size order (then ordered by room type). The algorithm would then

take each room and proceed through the list  of  rooms in  decreasing size

order.  This  way,  the  modules  needing  larger  rooms  (the  harder  ones  to

allocate)  would  be given rooms first.  Unfortunately  this  ordering  results  in

small classes being assigned to rooms larger than they require (potentially a

tutorial group of 15 students could be placed in a 200 capacity lecture theatre)

– not a bad problem but one it would be desirable to avoid. Fortuitously this is

easily solved by reversing the sorts. Modules and rooms are now ordered in

ascending size order; if a room is too small it is passed over and a larger one

searched for. This way, modules will be assigned to rooms just large enough

to hold them.

4.3. Reading the data

The requirements for the timetable (the modules to be scheduled, the rooms

to  fill  and  so  on)  are  taken  from the  timetabling  requirements  of  the  first

semester  of  2000-2001 in  the School  of  Computing.  The School  uses the

Celcat  [22]  timetabling  software  to  hold  its  manually  created  timetables.

Following discussions with the school timetabler a number of data files related
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to this and other semesters was obtained. The semester chosen was purely

because the data for that semester appeared the most consistent and well-

structured.

Reading the room, cohort, module and lecturer data was straightforward text

parsing. As the data files are read, a new object of the appropriate type is

created and added to an array. This array is then fed into the Requirements

class.

In contrast to this, adding the links between cohorts, lecturers and modules

(and hence defining which nodes on the graph are neighbours) is a little more

difficult. The links between lecturers and modules are held in a flat text file; as

each link is read, a linear search is performed on the lecturer array to find one

with a matching name. Then a linear search is performed on the set of nodes

in the Timetable object; the node holding a matching module to that required

is then copied into the lecturer object.

A similar process is used to build the links between the cohorts except that

there  is  not  a  straight  flat  file  in  the data  provided.  Instead,  the  complete

timetable file had to be parsed to find which modules were associated with

which cohorts.

The Timetable object  created can be reused by resetting all  the nodes to

undefined timeslots and no rooms. This  allows the timetable to  be reused

without reloading the data. This means that although the linear search and
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string comparisons used here are not very efficient or fast, the process is only

performed once at program initialisation and thus is not of much bearing on

the overall algorithm speed.

Once the code for reading the timetable requirements had been written, the

process of running and improving the algorithms could begin. During this, it

became clear from an early stage that the algorithms were taking a long time

to run. In addition to the improvements discussed shortly, a simpler subset of

requirements was created to allow faster tests to be run without the burden of

building timetables for the entire school. This subset consists of the modules

and cohorts in the undergraduate foundation year – omitting everything for

years 2-4 and the postgraduate courses and reducing the number of modules

to schedule to around a sixth of that in the full problem.

4.4. Problems with Algorithm Speed

4.4.1. Overview

Once the GAs were implemented they were running but considerably slowly,

and generally struggling to reach an optimal timetable. This was the case for

all three algorithms so it was likely to be the fitness function at fault (the GA

code had already been tested successfully with other fitness functions). The

lack  of  a  functioning  local  search  also  considerably  hampered  the

performance of the MA.
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Several  areas  were  investigated  for  improvement;  during  this  process  the

GA/MA  would  be  run  while  outputting  the  best  fitness  found  at  each

generation.  This  process would be repeated for  a few runs to reduce any

random anomalies. In conjunction with the GUI, running the algorithms in this

way allowed the best operators and likely best ranges for other parameters to

be determined.

Initially some experimentation with the basic GA operators was performed. It

was at this stage that the arithmetic operators such as Average Crossover

described  earlier  were  confirmed  to  perform poorly. Mutation  appeared  to

make  less  difference  and  it  was  decided  to  use  the  most  configurable

mutation  operator  (number  creep)  and  allow  the  optimisation  process  to

improve it later.

4.4.2. Sorting the Modules

In [25] the modules are sorted into order by size of room required prior to

commencing the MA. In this case it is a requirement of the permutation based

fitness function but it opened another line of investigation. If the modules were

sorted somehow, would that allow groups of alleles (genes) matching groups

of similarly difficult to schedule modules to form in the chromosomes within

the population? After some experimentation with the set of foundation year

modules,  this  appeared  to  have  a  positive  effect  on  performance;  it

approximately halved the number of clashing modules scheduled for the same

time in the timetable for the same number of generations. Two approaches

were tried; ordering by room size required and ordering by the number of
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neighbours (how hard it was to find a timeslot without clashes) – the latter

improved performance best. This effect was also reflected in run for all three

algorithms.

4.4.3. Boltzmann Selection

A reason for poor performance in many GAs is poor coverage of the search

space. This can occur for several reasons but it generally results in a large

number of suboptimal chromosomes taking over the population. Two attempts

to  stop  this  were  made  during  this  investigation.  Firstly,  a  new  selection

operator,  Boltzmann  Selection  (outlined  earlier)  was  implemented.  This

reduces selection pressure early on in the evolutionary process allowing a

widely varied population and increases it as the search begins to focus on an

optimum. Another means of achieving a similar goal was also tried; varying

mutation rate. Early on, the mutation rate was kept high (close to 1.0) to allow

a highly diverse population to develop (Elitism ensures that the high mutation

rate does not destroy the best chromosomes found so far). As the population

begins  to  converge  on  an  optimal  solution  the  mutation  rate  is  lowered.

Disappointingly,  neither  of  these  approaches  yielded  a  massive  gain  in

performance; varying the mutation rate actually appeared to make some runs

poorer. Boltzmann Selection did however show a small positive effect and was

subsequently included as one of the selection operators investigated in the

optimisation experiments.
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4.4.4. The Global Fitness Function

Following investigation into the factors affecting the MA and GA, it was clear

that  the  major  place  for  improvement  was  the  fitness  function.  From  the

number of constraints and complexity of timetables described earlier, it can be

deduced that the assessment of a candidate timetable is likely to be a lengthy

process. Originally the fitness function calculated the number of violations of

each constraint separately, adding the results together at the end. This was a

logical  approach and made the initial  implementation straightforward. It  did

however mean three separate traversals of the graph of modules to count the

hard  constraint  violations;  once  to  check  for  timeslot  clashes  with

neighbouring  modules,  once  to  check  for  non-allocation  of  and  invalid

timeslots and once to check for non-allocation of and invalid rooms. This was

an obvious choice for improvement; now only one pass of the modules graph

is made, checking for all hard constraint clashes on the way.

Another wasteful loop was found in the calculation of soft constraint violations,

reasonably late on in the course of the project. Originally the set of lecturers

and cohorts would be traversed and for each a weekly timetable would be

constructed. This would involve looking at the lecturer / cohort’s modules and

finding the nodes holding these modules in the timetable object. The node

could  then  be  examined  to  determine  what  timeslot  and  room  had  been

assigned to  the module and this data used to  build a timetable grid.  This

process involved a costly linear search for every lecturer and cohort which

was likely to be a significant drag on performance. Using the object-oriented

nature of Java made fixing this problem easy; rather than storing a reference
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to  Module  objects  in  each  Cohort  or  Lecturer  object  a  reference  to  the

Timetable.Node object was stored instead. Now the need for the linear search

was gone – to construct a timetable for a lecturer or cohort all that must be

done is a simple traversal of the relatively small set of Timetable.Node objects

held within that lecturer or cohort object. The work of matching modules to

nodes is now done during the one-time-only data loading process at program

initialisation.

An attempt was made to reduce the number of fitness function executions by

storing  all  chromosomes  evaluated  so  far  and  parsing  this  when  a  new

chromosome was created. This would remove any repeated running of the

fitness function on identical timetables. In practice, the number of timetables

evaluated  runs  in  to  many  thousands  and  the  set  being  stored  rapidly

exceeded the memory of the host computer. Additionally, because the search

was linear (sorting the stored chromosomes to allow binary search being even

more  time  consuming)  it  quickly  became  slower  than  just  evaluating  the

fitness function. 

4.4.5. The Local Fitness Function

The strength of the memetic algorithm lies in its ability to reduce the total

search space by using local search to reach a local optimum whenever a new

chromosome is generated. Initially the full  fitness function was called each

time a new chromosome was generated in the local search, but for the MA to

yield  an  improvement  over  the  GA the  local  search  must  take  very  little

processing power. This is achieved by having a “local fitness” function which

Page 43 of 82
 



Alexander Brownlee 0002598 Honours Project

can determine the change in overall chromosome fitness yielded by altering

one allele (that is, changing one module’s timeslot) without recalculating the

fitness  for  the  entire  timetable.  This  may  seem a  straightforward  thing  to

implement but is more complicated than it first appears. Any single change to

the timeslot of a module has an effect on all of the following:

1. The number of clashes the changed module has with its neighbours

2. The number of clashes each of those neighbours has

3. The rooms allocated at both the timeslot it was in and the new timeslot,

and  whether  this  has  a  reflection  on  the  number  of  modules  not

allocated to rooms

The makeup of the timetables for the lecturer and all cohorts associated with

that module

(1) is easy to recalculate and can be done by simply comparing the set of the

changed module’s neighbours with it; (2) is also simple to implement as an

extension to (1), although more processor intensive. (3) requires the greedy

algorithm to be called to reassign rooms to modules in the timeslots.  This

requires a costly linear search of the timetable to find all modules allocated to

either timeslot, as well as running the greedy algorithm twice (which includes

a sort into room size order). Although (4) had been improved considerably by

removing the linear search for modules associated with lecturers / cohorts,

this did not improve the local search. It required a linear search through all

lecturers and cohorts to find those which are associated with the changed
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module  before  analysing  each  of  their  timetables.  Fortunately  the  object

oriented nature of the program made improving this straightforward – now

each Module  object  stores  a  set  of  references to  all  Cohort  and Lecturer

objects associated with it, this being updated when adding Module objects to

Cohorts  and  Lecturers.  This  further  removal  of  a  linear  search  improved

matters somewhat.

Although much work was done trying to improve the local search algorithm, it

still runs disappointingly slowly. Perhaps further optimisations are possible –

this would certainly be one focus of any further work. One alternative could be

to remove the costly calculations relating to soft constraints until much later in

the  evolutionary  process,  allowing a  useable  timetable  to  be  created then

making it more desirable. To compound the speed problem, when compared

to the full fitness function it did not seem to compute fitness changes correctly.

One reason for this is the function used to compute fitness from the number of

constraint  violations;  that  previously  given  in  figure  (v)  and  repeated  for

convenience here in figure (vii). 

Summing the violations across the whole timetable to find v and substituting

into the formula does not yield the same result  as summing the violations

caused by one module to give u, substituting into the formula for each module

and adding all the results together afterward, as in Figure (viii). For example,
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say a timetable had 3 modules, the allocation for each of which caused 3

constraint violations. Overall, there are 9 violations, thus we have a fitness of

1 over (1+9), giving 0.1. However, the local fitness impact of each would be

calculated as 1 over (1+3), giving 0.3333. Added together, the total “fitness”

would be 1.0; clearly incorrect. To solve this, a different formula would need to

be used when calculating local fitness.

To ensure fair comparison of the algorithms the decision was taken to use the

full fitness algorithm for local searches – although this would be much slower

it  was  at  least  accurate  and  as  long  as  the  number  of  local  searches

performed  was  counted  it  would  be  possible  to  see  how  much  of  an

improvement  a  local  fitness function would make.  A set  of  static  variables

were added to  the Timetable class to  keep track of the number of  fitness

functions  called  from  both  the  global  timetable  fitness  and  local  search

functions.  The total  numbers  of  each type of  fitness evaluation completed

during 5 sample runs to 2000 generations are given in Table A.

Table A – Fitness Function Calls
Full fitness function calls Local fitness function calls

Average 325799.6 5774435
Std dev 559.7569 67285.11

It can be seen that – as expected – local fitness calculations outnumber full

fitness calculations considerably; just under 20 to 1 in this case. So here the

local fitness function would need to be at least 20 times faster than the full

fitness function to yield an improvement. This is not an unreasonable target

given that it would only have to evaluate a small portion of the timetable.
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5. Optimisation of the Algorithms

5.1. Overview

Prior  to  comparison of  the three algorithms it  was desirable that  each be

performing optimally to allow them to compete on a level playing field. The

problem is that optimisation of several interacting factors simultaneously is in

itself a computationally hard problem (One that is in fact well suited to a GA

solution;  indeed much work  has been done on optimising  GAs with  other

GAs). However, construction of a further GA to optimise the algorithms would

require much more work, beyond the scope of this project.

5.2. Fractional Factorial Screening Experiment

5.2.1. Fractional Factorial Analysis

A full factorial experiment which could establish all interactions between the

factors would be ideal, but as the name implies would require 2n experiments

(where n is the number of factors) with each factor having 2 possible values.

This  rapidly  becomes  a  large  number,  26  being  64  and  27  being  128.

Fractional factorial analysis is an industry standard approach to optimisation

of  factors  such  as  those  affecting  a  genetic  or  memetic  algorithm,

demonstrated in [15].  It trades of analysis of the higher order interactions to

reduce the total number of experiments. Here, fractional factorial analysis will

be used for a screening experiment where insignificant factors are determined

and  removed  from  further  analysis.  A response  surface  modelling  of  the
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significant factors will  then be performed to determine their optimal values.

The statistical package Minitab [23] provides a good set of tools for optimising

multiple factors using this technique. Given a set of parameters to examine

with their ranges it will generate a set of experiments to be performed. The

results of these experiments are then used to determine the significance of

the factors involved allowing the insignificant ones to be screened out from

the later response surface experiment. 

5.2.2. Factors

The factors for all three algorithms are given in Table B.

Table B – Factors for the Fractional Factorial Screening Experiment
Factor Minimum Value Maximum Value
Population Size 100 500
Mutation Rate 0.02 0.2
Crossover Rate 0.25 0.75
Crossover Points 2 20
Mutation Creep Step 1 10
Selection Method Tournament Selection Boltzmann Selection
Local Search Iterations* 1 10

*Only included for the memetic algorithm (Algorithm D)

The high and low values are chosen based on previous experience with GAs

and values used in other implementations. In more detail the factors are:

 Population size is simply the number of chromosomes present in each

generation.

 Mutation and Crossover Rate are the probabilities that either mutation

or crossover will occur at any one breeding. The separate probability
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that one particular allele may be mutated during a mutation operation is

fixed at 0.1.

 Crossover Points is the number of points at which chromosomes cross

during a crossover operation.

 Mutation Creep Step is the maximum change that may be applied to an

allele during a mutation operation

 Selection Method is the technique used to select prospective parent

chromosomes. Being a non-numeric factor it cannot be optimised in the

strictest sense, but its significance can still be calculated and manual

analysis  of  the  results  may  indicate  which  method  yields  better

performance.

 Local  Search  Iterations  is  the  number  of  repeated  unsuccessful

attempts  at  improving  a  chromosome’s  fitness  that  the  memetic

algorithm local search has before assuming that the local optimum has

been reached.

There are also a large number of factors which could also be altered, but will

be kept fixed to keep the number of experiments at a reasonable level. The

number of elites retained between generations is kept at five. The mutation

and crossover operators could also be changed to one of the alternatives

discussed earlier but are kept fixed to creep mutation and standard crossover.

By  altering  the  maximum  creep  step,  we  can  have  either  gentle  creep

mutation (low creep step) or effectively random value mutation (high creep

step), so by including creep step in the optimisation we are effectively looking

at two mutation operators anyway. For crossover, the alternatives for integer
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alleles include averaging or some other mathematical function of both parents

chromosomes and more complex versions of plain crossover. It was felt that

mathematical crossover like averaging makes little sense when considering

that  two timeslots  near  to  each other  in  the  timetable could be populated

completely  differently  (and hence be far  more/less  suitable  for  a  module).

Effectively a mathematical crossover would be a complex mutation operator

meaning that an allele in an offspring chromosome should be taken unaltered

from one of its parents, not a mathematical function of both.

5.2.3. Approach Taken

The aim of this optimisation is to reduce the overall time that each algorithm

takes to reach a viable timetable. This is repeated 10 times each to reduce the

effects of randomness.

Although  a  single  program  run  is  considerably  faster  than  the  manual

timetabling  procedure  it  still  takes  hours  rather  than minutes  to  complete.

While it  would be most desirable to optimise each algorithm based on the

number of generations required to reach a feasible solution (the approach

taken in [2]), given the number of repeats required and the large number of

experiments required by the fractional factorial analysis (though still far less

than full factorial) the decision was taken to look at the average fitness level of

the  best  timetable  found  after  a  fixed  number  of  generations.  While  not

perfect, the best fitness found does increase over a reasonably smooth curve

for most GAs, so this approach is acceptable. With more time (or had the

fitness function itself  been improved in its  efficiency)  it  would be better  to
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repeat the optimisation running each algorithm to completion. The limit chosen

was 200 generations.

Another approach that was considered was to optimise each algorithm using

the much simpler problem of scheduling foundation year modules only, having

less  than  1/5  the  number  of  items  to  schedule.  This  approach  was

disregarded on the grounds that the algorithms should be optimised when

running on the harder problem which potentially has a much different search

space.

Seeded random number generators are used for all random elements of the

GA and MA runs. This guarantees that each experiment starts with the same

population. The number seed starts at 1000 and is incremented by 1000 for

each repeat before being reset to 1000 for the next experiment. The maximum

fitness found at each generation in each experiment is output to a text file

(guaranteed to be the best fitness in the 200 generation population because

of  the  use  of  elitism).  Although  only  the  best  fitness  found  after  200

generations is required it is helpful for debugging purposes to output as much

data as possible and discard that which is not needed later rather than having

to rerun the experiments again if more data is required later.

5.2.4. Results

The results of the fractional factorial experiments are given in Tables C-E. The

significant factors are those with a p-value less than 0.05 and are shown in

bold in the tables. (Detailed data is given in Appendix E)
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Table C – Results of 26-2 Fractional Factorial Experiment for Algorithm A

Factor Effect Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.002406 0.000064 37.79 0
Population Size 0.000594 0.000297 0.000065 4.54 0.001
Mutation Rate -5.1E-05 -2.6E-05 0.000052 -0.49 0.635
Crossover Rate -0.00023 -0.00011 0.000077 -1.48 0.17
Crossover Points 0.000227 0.000114 0.000077 1.48 0.17
Mutation  Creep
Step -0.00005 -2.5E-05 0.000054 -0.46 0.654
Selection Method -0.00058 -0.00029 0.00006 -4.87 0.001

Table D – Results of 26-2 Fractional Factorial Experiment for Algorithm B

Factor Effect Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.001699 0.000061 27.72 0
Population Size 0.000167 0.000084 0.000063 1.33 0.213
Mutation Rate -0.00014 -7.1E-05 0.00005 -1.4 0.192
Crossover Rate -0.00026 -0.00013 0.000074 -1.77 0.107
Crossover Points -6.5E-05 -3.3E-05 0.000074 -0.44 0.667
Mutation  Creep
Step -0.00019 -9.5E-05 0.000052 -1.82 0.099
Selection
Method -0.00036 -0.00018 0.000057 -3.15 0.01

Table E – Results of 27-2 Fractional Factorial Experiment for Algorithm D

Factor Effect Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.001825  0.000064 28.53 0.000
Population Size 0.000501   0.000250  0.000070 3.57 0.016
Mutation Rate -0.000003  -0.000001  0.000045 -0.03 0.976
Crossover Rate -0.000006  

-0.000003  0.000005 -0.61
0.567

Crossover Points -0.000059  -0.000029  0.000098 -0.30 0.776
Mutation  Creep
Step

0.000033   0.000017  0.000092 0.18
0.863

Selection Method -0.000404  -0.000202  0.000043 -4.66 0.005
Local  Search
Iterations

0.000162 0.000081  0.000101 0.80
0.460
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It can be seen that selection method is significant in all three algorithms. Only

in Algorithm A is another factor significant – population size. 

5.3. Response Surface Experiment

5.3.1. Summary

Once the significant factors have been determined by the fractional factorial

experiments it is possible to fix the insignificant factors at some arbitrary value

and “zoom in” using a central composite design response surface experiment

to determine the optimal values of the important factors. The response surface

is defined by a general quadratic equation in the significant variables. Minitab

solves the system of equations resulting from the partial derivatives of this

equation,  coefficients  of  the  general  surface  are  determined  and  optimal

values for each variable are found.

The only issue here is that the response surface experiment can only optimise

quantitative  (numeric)  factors  such  as  crossover  and  mutation  rate,  not

qualitative ones such as the selection operator used. Manual examination of

the results from the fractional  factorial  experiments indicates that  (perhaps

surprisingly)  tournament  selection  outperformed  Boltzmann  selection.  This

may  be  an  issue  with  implementation  –  perhaps  the  way  in  which  the

temperature constant was calculated was not as it could be. This is a further

area for possible future study. With this in mind, all experiments after this point

were conducted using tournament selection.
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The  response  surface  approach  is  more  suited  to  multiple  parameter

optimisations – not the case here because only the population size is being

optimised. Initially it appeared as if the fractional factorial experiments showed

all the factors to be significant, so the response surface was run to optimise all

parameters. Maximum and minimum values for parameter were the same as

those used in the fractional factorial screening experiment. This later turned

out to be a misunderstanding of Minitab’s operation, and the results given

previously are the correct ones. The experiments were not wasted however; it

is  still  possible  to  use  their  results  to  determine  an  optimal  value  for  the

population size and some other interesting pieces of information.

5.3.2. Results

Table F – Results of Response Surface Experiment for Algorithm A

Factor Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.002288 0.000026 89.431 0.000
Population Size 0.000121 0.000017 7.282 0.000
Mutation Rate -0.000032 0.000016 -1.954 0.077
Crossover Rate 0.000071 0.000015 4.851 0.001
Crossover Points 0.000039 0.000016 2.354 0.038
Mutation  Creep
Step -0.000017 0.000015 -1.127 0.284

Table G – Results of Response Surface Experiment for Algorithm B

Factor Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.001695 0.000029 57.725 0.000
Population Size 0.000033 0.000019 1.716 0.114
Mutation Rate -0.000045 0.000019 -2.416 0.034
Crossover Rate -0.000005 0.000017 -0.281 0.784
Crossover Points -0.000014 0.000019 -0.744 0.472
Mutation Creep 
Step 0.000015 0.000017 0.898 0.388
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Table H – Results of Response Surface Experiment for Algorithm D

Factor Coefficient
Standard
Coefficient

t-ratio p-value

Constant 0.001568 0.000026 60.796 0.000
Population Size -0.000007 0.000011 -0.626 0.537
Mutation Rate -0.000044 0.000011 -3.838 0.001
Crossover Rate -0.000042 0.000011 -3.724 0.001
Crossover Points 0.000005 0.000011 0.412 0.684
Mutation Creep 
Step -0.000014 0.000013 -1.068 0.296
Local Search 
Iterations 0.000021 0.000013 1.543 0.135

As indicated by the fractional factorial screening experiment, the population

size was a significant factor in Algorithm A. Interestingly, the crossover rate

and the number of crossover points also appear to be significant (p < 0.05) in

the response surface experiment.

Algorithm B has no significant factors in the response surface experiment. As

selection  method  was  the  only  significant  factor  found  in  the  screening

experiment and is not included here, this is as expected.

Algorithm D is most interesting. While the screening experiment indicated that

population  size  was  significant,  here  mutation  and  crossover  rate  are

significant and population size is not. It is uncertain what could have caused

this.

The optimum values for the population size (the only significant factor other

than the selection method) was the maximum of 500 for both algorithms A and

D. Likewise, optimal values for other factors were also at their upper / lower
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limits.  This  would  suggest  that  a  least  the  upper  limit  was  too  restrictive;

further investigation could well reveal a higher optimum population size.

The optimal values found are given in Table I.

Table I – Optimal Values Found
Algorithm A Algorithm B Algorithm D

Population Size 500 500 500
Mutation Rate 0.02 0.02 0.02
Crossover Rate 0.75 0.75 0.25
Crossover Points 20 20 2
Mutation Creep 
Step

10 10 10

Local Search 
Iterations

N/A N/A 10

5.4. Confirmation Experiment

With the optimal values determined, a short confirmation experiment was run

with each of the algorithms to prove that they are now performing better than

any of their previous runs. This was also over 200 generations but repeated

10 times each; the results for each algorithm are given in Table J.

Table J – Results of Confirmation Experiment
Algorithm Average best fitness 

found after 200 
generations

Std
deviation

Best  fitness  found  during
previous experiments

A 0.002471 0.000050 0.0026401
B 0.001686 0.000045 0.001892
D 0.001601 0.000052 0.0018568

These values were compared with the results from both the fractional factorial

and response surface experiments. For each of the respective algorithms the

values were within 12% of the best of the previous results, confirming that the
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significant  parameters  being  examined  were  close  to  their  optimal  values

(allowing for random error). The slight drop is interesting; the optimal values

are the same as those which yielded the best results in previous runs, so the

drop must be due to some random error. This does not guarantee that those

factors not being examined are optimal;  however, examination of the large

number of variables remaining is beyond the scope of this project and given

past experience of GA design the majority of these are not as likely to be

significant as those examined.
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6. Comparison of the Algorithms

6.1. Experiments

At this point the final stage of the project has been reached. The algorithms

optimised, it is now possible to compare their performance relative to each

other. Direct comparison of algorithms A and B is possible by counting the

number of fitness evaluations run to reach a particular fitness – the fitness

evaluation  being  by  far  the  most  expensive  part  of  the  algorithms.  The

memetic algorithm cannot be evaluated directly in this way because the local

fitness function is also used; to allow this to be a measure of performance it is

necessary to look closely at the relative calculation costs of the full search and

the local search.

The fitness reached will  be that at which no hard constraints are violated.

Given  the  weightings  and  fitness  formula  discussed  earlier  (100  for  hard

constraints and 1 for soft constraints) this will occur when the fitness is more

than 0.5. In some extreme circumstances (when there are more than 100 soft

constraint violations) it will occur at less than 0.5, but under these conditions

the timetable will  not be appealing to those using it  and would likely need

some work anyway. Additionally, owing to time constraints near the end of the

project  (especially  considering  the  lack  of  a  local  fitness  function  in  the

memetic algorithm) it  became necessary to run the comparisons using the

foundation year data only and not the full school timetable. With more time the

experiments could be performed with the more time costly full data set.
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Each  algorithm was  run  to  2000 generations  10  times.  The  average best

fitness found at each generation (effectively the quality of solution) and the

percentage of runs having found a feasible timetable at each generation were

recorded and are presented here.

6.2. Results
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It  is clear that with the current implementations, Algorithm B (GA + greedy

room allocation) performs the best. Algorithm A performs exceptionally poorly,

never raising above very low fitness levels and certainly never achieving a

feasible timetable. While it might be expected that it would not perform as well

as the other algorithms (as discussed previously) its highly poor performance

is interesting. The greatly increased search space brought about by requiring

the GA to perform room assignment has obviously made a large difference.

One thought here is that with the much larger range of possible allele values,

the limit on the maximum mutation is too low. To change the timeslot of a

module (and hence repair a clash) it would require a large change to its allele

value (on average this would be equal  to half  the total  number of rooms),

whereas  a  change  of  1  in  Algorithms  B  and  D  will  change  the  timeslot.

Additionally,  it  is  possible  that  different  operators  such  as  the  uniform  or

fitness based scan crossover would work better. It is also feasible that a new

mutation operator which acknowledges the encoding could be developed –

this would allow change of either room or timeslot without affecting the other.

The performance of Algorithm B is very good – best illustrated by diagram A,

not  only  does  it  generate  feasible  timetables  in  mostly  under  1000

generations, but as indicated by the steepness of its graph it  also takes a

reasonably constant (500-600) number of generations to do so. In addition to

this the average best fitness found is also very high – at the point a feasible

timetable is found the fitness is just over 0.5 meaning that there are around

100  soft  constraint  violations.  In  around  another  1000  generations  this

improves to a fitness of 0.96 or 4 soft constraint violations. Even across the
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smaller foundation year timetable this is quite good – it is not unheard of for

students  to  have what  might  be  considered a  soft  constraint  violation like

Wednesday  afternoon  classes  or  more  than  three  consecutive  hours  of

lecturing.

The real unexpected performance is of Algorithm D. It was hoped that even

though the algorithm ran slower than the others (due to the lack of a working

local fitness method) it would still  take fewer generations to find a feasible

timetable. If this were the case a suitably fast fitness function would result in

Algorithm D being  faster  overall.  However,  the  algorithm appears  to  stop

improving at around 500 generations – just the same point that Algorithm B

starts reaching feasible solutions. There are a number of possible reasons for

this. It may be that the GA is not able to make large enough changes to the

timetables to jump from one local optimum to another and is getting stuck. 

6.3. Manually Generated Timetable

An attempt to read the manually generated timetable for the data set being

used was also  made.  This  would  allow the  fitness function  to  assess the

timetable and allow comparison between the results of the time consuming

manual process and the automated system. Although this did appear to work,

the  intricacies  of  Celcat  data  format  used  resulted  in  several  classes

remaining unscheduled. This gave the manual timetable a very poor fitness. It

is  worth  noting  that  the  automated  system  did  manage  to  allocate  these

classes in addition to the others. It is also a simple task to rerun the algorithm
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if an undesirable timetable is generated – this is not the case for the manually

generated timetable.
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7. Conclusions and Future Work

The  project  has  successfully  investigated  different  applications  of  genetic

algorithms to the timetabling problem. While the original goals of developing

the best  performing algorithm further  and a more advanced GUI were not

achieved,  the  extra  time  spent  optimising  the  algorithms  was  a  valuable

experience.  The  project  did  meet  the  main  objective;  to  implement  and

optimise three algorithms to solve the timetabling problem and compare them.

The project followed the initial time plan well until the optimisation stage – at

this  point  progress  fell  behind  because  of  the  poor  performance  of  the

algorithms. Some extra time was devoted to improving this performance; this

was a worthwhile experience and did make an improvement to performance

so is not deemed to be wasted.

A hindrance to the progress of the project was the lack of specifics in the

research  papers  about  the  implementations  the  work  was  based  on.  The

resulting program also has extra capacity added for future expansion (such as

the ability to change the timetable size and available times using the timeslots

class)  which was not  used.  It  may have been better  to have achieved an

efficient working implementation using a fixed structure first and if time had

allowed the flexibility could have been added in.

There are several areas which could be expanded on in future research. The

literature studied indicates that there is considerable room for improvement in

the  local  search  method  of  the  memetic  algorithm,  especially  given  the
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algorithm’s  unexpected  poor  performance.  In  particular,  the  local  fitness

method of the Timetable class needs perfected to allow the use of it rather

than the more costly complete timetable fitness calculation. This may require

a reworking of the class structure to allow fitness changes to be more easily

determined.

While  Boltzmann Selection  did  not  appear  to  be  suited  to  the  timetabling

problem, a variety of alternative operators also exist which could be tried. The

possibility of varying the creep mutation step over time and use of different

mutation and crossover operators as discussed earlier could also be looked

into. Candidates include the many different operators looked at in the earlier

discussion of GAs.

Some investigation into the weights given to constraints – especially the soft

constraints – also remains to be carried out. It would be helpful to conduct a

trial in which generated timetables are given to students for evaluation. The

closest  to  this  reached  in  this  project  was  the  electronic  evaluation  of  a

manually generated timetable; though this did allow some comparisons to be

made. The possibility of relaxing soft constraints until a feasible timetable has

been  developed  could  have  a  significant  impact  on  performance  and  is

certainly an area worth exploring.

Further to work on these ideas, completely unexplored areas of GAs applied

to  timetabling  include  the  permutation  implementation  detailed  in  [25]  and

other implementations not covered here. Timetabling and genetic algorithms
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are both vast areas of study and consequently a large amount of research is

left to be done.
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Appendix A. Glossary

Algorithm A One of the three timetabling algorithms being investigated.
This is the simplest approach; a GA which assigns both
times  and  rooms  to  modules.  Each  allele  value  in  a
chromosome represents a module; the value assigned to it
is in the range of 0 – (number of timeslots X number of
rooms)

Algorithm B The second timetabling algorithm being investigated. A GA
assigns  a  timeslot  to  each  module.  A greedy  algorithm
then assigns rooms to modules within each timeslot. Each
allele again represents a single module; its range of values
being equal to the number of timeslots.

Algorithm C An MA based on the GA used in Algorithm A. Based on the
literature  survey  and  initial  testing,  this  was  unlikely  to
perform well  and  was  abandoned  early  in  the  practical
implementation  in  favour  of  developing  the  other  three
algorithms.

Algorithm D The  final  timetabling  algorithm  covered.  A duplicate  of
Algorithm B but using an MA instead of a GA.

Allele A single value  in  a  GA chromosome.  In  the  timetabling
algorithms,  each allele is the timeslot (and room in one
case) allocated to one particular module.

Chromosome The group of allele values representing a single possible
solution to the problem being solved by a GA.

Cohort A group  of  students  studying  the  same  syllabus.  This
group may share modules with other cohorts.

Crossover The  process  within  a  GA  by  which  parts  of  multiple
chromosomes (parents) are combined to generate one or
more new chromosomes (offspring).

Elitism The preservation of a number of the best chromosomes
from one generation to the next in a GA.

Fitness A  numeric  value  calculated  to  represent  how  good  a
solution a given chromosome is.

GA or  Genetic
Algorithm

An  algorithm  based  on  the  mechanics  of  Darwinian
evolution.  Possible  solutions  to  a  problem are  encoded
into strings of values called chromosomes which are given
a “fitness” value derived from how good a solution they
are. Some of these (with a bias toward fitter ones) are then
combined with each other to produce new chromosomes
or  “offspring”;  an  element  of  random  mutation  is  also
present. This process is repeated either a fixed number of
times  or  until  a  chromosome  of  a  particular  fitness  is
reached.
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Generation The population of chromosomes in a GA at one point in
time. Each generation, a new population is created from a
selection of the chromosomes in the previous one.

Greedy
Algorithm

An algorithm which works towards a goal in stages. Used
in Timetabling Algorithms B and D to take each room in in
turn from a given timeslot and allocate a room to it.

Hillclimbing A local  search  algorithm  which  finds  the  nearest  local
optimum to a given solution. It slightly mutates the current
solution and keeps the best solution found so far. This is
repeated  until  the  point  is  reached  where  no  further
improvements are possible without large changes to the
current optimal solution.

Lecturer The individual supervising or teaching a particular module.
Multiple lecturers may also share modules.

Local optimum Within a search space of solutions to a problem there is
often  a  number  of  solutions  which  are  higher  in  fitness
than any similar solutions but are not the best overall.

Local Search A term for the process of exploring the search space near
to a given solution by altering it in small steps.

MA or Memetic
Algorithm

An extension  of  a  GA with  an  element  of  local  search
added.  Every  time  a  new  chromosome  is  created  a
hillclimbing  algorithm  is  used  to  mutate  it  to  a  local
optimum.

Module In the context of this project a module represents a single 
interaction between lecturer and group of students; a 
single lecture, tutorial or lab session.

Mutation A random  alteration  of  part  or  all  of  a  newly  created
chromosome in a GA.

Node A node  in  the  timetable  is  a  reference  to  a  particular
module  requiring  scheduling,  which  also  stores  the
timeslot given to the module, the room assigned to it and
links neighbouring modules (that is, ones it may not share
a timeslot with)

NP-hard Nondeterministic Polynomial - Hard; a class of problems
which have no known algorithm that  can solve them in
polynomial time.

Recombination See Crossover

Selection The  process  of  choosing  chromosomes  from  a  GA’s
current population which will contribute to the creation of
the next generation.
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Appendix B. Pseudocode

Rather than include the rather verbose Java source code in printed form, the
important  algorithms are outlines here in pseudocode. The Java source is
included on the accompanying CD-ROM.

B.1. Local search

1. countdown = LocalSearchIterations parameter
2. bestfitness = current chromosome’s fitness
3. bestchromosome = current chromosome
4. While countdown > 0, repeat:

4.1. change=0
4.2. newChromosome = bestChromosome
4.2. For each clashing node in newChromosome:

4.2.1. Repeat until no clashes found (max 20 times):
4.2.1.1. Assign a random timeslot to node

4.3. If newChromsome’s fitness > bestFitness
4.3.1. bestfitness = newChromsome’s fitness
4.3.2. bestchromosome = newChromosome

4.4. Otherwise
4.5. Subtract one from countdown

B.2. Local fitness 

Incomplete; soft constraints calculation, and final total function. Parameters are
the node being examined and its new and old timeslots
1. Set all clash counts to 0
2. Run greedy room allocator on modules in new and oldtimeslots
3. For each node visited by the greedy room allocator, repeat:

3.1. If node has no room allocated, add one to room unallocated count
3.2. Add the number of clashes the current node has with neighbours to clash

count
3.3. If node results in a module being split over a day boundary, add one to

broken classes count
4. For each cohort taking the node, repeat:

4.1. For each day on the timetable, repeat:
4.1.1. If there is no unoccupied lunch hour, add one to lunch hour count
4.1.2. If this is a Wednesday and there is a class in the afternoon, add

one to Wednesday free count
4.1.3. If there is a long run of classes, add one to class groupings count
4.1.4. If there is a large gap between classes, add one to class spacings
count

5. For each lecturer associated with the node, repeat: 
5.1. Set dayFree to false
5.2. For each day on the timetable, repeat:

5.2.1.  If  there is no unoccupied lunch hour, add one to lunch hour
count

5.2.2. If there are no classes today, set dayFree to true
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5.3. If dayFree is false, add one to day free count
6. Add all the counts together, multiplying each by its weighting first
7. Return 1 / (total + 1)

Part (7) above is one of the factors contributing to the incorrect operation of the local
fitness function. However, during debugging the total number of constraint violations
was not correct either. These problems would have to be solved in any further work
on the memetic algorithm.

B.3. Fitness

1. Set all clash counts to 0
2. Reset the clashing nodes array
3. For each node (module), repeat:

3.1. If node has no timeslot, add one to timeslot count
3.2. If node has no room, add one to room count

Otherwise:
3.2.1. If room size is exceeded, add one to room size count
3.2.2. If room type is incorrect, add one to room type count

3.3. Add number of neighbours with same timeslot (clashes) to clashes count
3.4. If node results in a module being split over a day boundary, add one to

broken classes count
4. For each cohort, repeat:

4.1. For each day on the timetable, repeat:
4.1.1.  If  there is no unoccupied lunch hour, add one to lunch hour

count
4.1.2. If this is a Wednesday and there is a class in the afternoon, add

one to Wednesday free count
4.1.3. If  there is a long run of classes, add one to class groupings

count
4.1.4.  If  there  is  a  large  gap  between  classes,  add  one  to  class

spacings count
5. For each lecturer, repeat: 

5.1. Set dayFree to false
5.2. For each day on the timetable, repeat:

5.2.1.  If  there is no unoccupied lunch hour, add one to lunch hour
count

5.2.2. If there are no classes today, set dayFree to true
5.3. If dayFree is false, add one to day free count

6. Add all the counts together, multiplying each by its weighting first
7. Return 1 / (total + 1)

B.4. Number of Clashes

1. Set rval to 0
2. For each neighbour of the current node on the timetable graph, repeat:

2.1. If the index of the neighbour is greater than that of current node:
2.1.1. If the neighbour has a timeslot assigned to it:

2.1.1.1. Set thisStart to the timeslot of the current node
2.1.1.2. Set thisEnd to thisStart + current node’s length
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2.1.1.3. Set neighbourStart to timeslot of neighbour
2.1.1.4. Set neighbourEnd to neighbourStart + 

neighbour’s length
2.1.1.5. If both (thisEnd < neighbourStart) and 

(thisStart > neighbourEnd) are false, add one to
rval

3. Return rval

B.5. Greedy room allocator

This assumes nodes and rooms are already sorted in size order.
1. Get the set of timetables allocated to the specified timeslot
2. Get set of rooms available at this timeslot from the Timeslots object
3. Set curRoom to index of last room in array
4. Set curMod to index of last node (module) in list
5. While both curRoom and curMod are greater than or equal to zero, repeat:

5.1. Set status of current node to visited (used by local fitness / search)
5.2. If the room at index curRoom is big enough to hold the module at index

curMod:
5.2.1. Assign the room curRoom to the module curMod
5.2.2. Decrement curMod by one (move on to next module)
5.2.3. Decrement curRoom by one (move on to next module)

5.3. Otherwise:
5.3.1. Decrement curRoom by one (try next room)

6. Return the list of nodes visited

B.6. Copy alleles to timetable

The process of copying the allele values from a chromosome to the Timetable object
for evaluation has two different versions; one for Algorithm A and one for B and D.

Algorithm A:
1. For each allele value (and corresponding module in the timetable), repeat:

1.1. Set timeslot to the allele value mod (the number of timeslots)
1.2. Set room to the allele value divided by the number of timeslots
1.3. Save room and timeslot to appropriate node in timetable

Algorithm B & D:
1. For each allele value (and corresponding module in the timetable), repeat:
2. Run greedy room allocator for each timeslot

B.7. Crossover

Performed  when  generating  a  new  population.  Rather  than  always  just  copying
parents to make children,  on random occasions (with a given probability)  run the
crossover algorithm on the child chromosomes.
1. Create an array of Booleans the same length as the chromosome
2. Repeat a number of times equal to the required number of crossover points:

2.1. Pick a random point in the array

Page 72 of 82
 



Alexander Brownlee 0002598 Honours Project

2.2. Set it to true
3. Set swap to false
3. For each allele value in the chromosome, repeat:

3.1. If swap is true, copy alleles into corresponding child chromosome alleles
3.2. Otherwise, copy alleles into opposite child chromosome alleles
3.3. If the Boolean array value for this allele is true, flip the value of swap

B.8. Number Creep Mutation

Performed  when  generating  a  new  population.  Rather  than  always  just  copying
parents to make children,  on random occasions (with a given probability)  run the
mutation algorithm on the child chromosomes. Random number generation is similar
but  the allele  value is  just  replaced  with  a  value  between 0  and  rangemax.  An
argument passed to the mutate method denotes the probability that a single allele will
mutate (in this project, this is always 0.1) – this is different to the probability of a
mutation occurring when generating a new chromosome.
1. For each allele in the chromosome, repeat:

1.1. Pick a random value between 0 and 1.
1.2. Multiply this value by the maximum creep step time 2.
1.3. Subtract the maximum creep step size from this
1.4. Add this value to the allele
1.5. If the allele is out of range, set it to the limit it is closest to

B.9. Tournament Selection

1. Repeat for the number of chromosomes that need to be selected (usually equal to
the size of the population):

1.1. Pick two chromosomes at random from the population
1.2. Pick a random number between 0 and 1
1.3. If the number is under 0.8, add the fitter chromosome to those selected
1.4. Otherwise, add the less fit chromosome to those selected

2. Return the set of selected chromosomes

B.10. Boltzmann Selection

Boltzmann  selection  is  very  similar  to  the  more  widely  described  roulette  wheel
selection. In the Population class, both are implemented in the same method, with a
single  parameter  to  switch  between  them.  An extra parameter  sets  the selection
pressure.
1. Initialise an array equal in size to the population: cumulativeFitnesses
2. Set totalFitness to 0
3. For each chromosome in the population, repeat:

3.1. Divide the average fitness of the population by the pressure
3.2. Divide the fitness of the current chromosome by the pressure
3.3. Divide the value found in 3.2 by the value found in 3.1.
3.4. Add the value from 3.3 to totalFitness
3.5.  Set  the  value at  the  current  position  in  the  cumulativeFitnesses

array to totalFitness.
4. Repeat for the number of chromosomes that need to be selected (usually equal to

the size of the population):
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4.1. Pick a random number between 0 and 1
4.2. For each element in the cumulativeFitnesses array, repeat:

4.2.1. Divide the value from the array by totalFitness
4.2.2.  If  this  value  is  greater  than the random number  chosen,  or

totalFitness is  0  then  add  the  chromosome  from  the
position  corresponding  with  the  current  position  in  the
cumulativeFitnesses array  to  the  set  of  selected
chromosomes.
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Appendix C. Class Diagrams

For simplicity all method parameters, helper methods, debugging methods 
(such as toString) and any static final variables have been omitted.

C.1. Timetable Classes

Timeslots
private int theNumberOfDays
private int theNumberOfTimeslotsPerDay
private boolean[][][] theTimeslots
private Room[] theRooms

Timeslots()
bookRoom()
getNumberOfTimeslots()
getNumberOfTimeslotsPerDay()
getNumberOfDays()
getNumberOfRooms()
isLunchHour()
isAfternoon()
getRoom()
refreshAvailableRooms()
getAvailableRooms()
getAvailableRooms()

Requirements
private TreeSet theCohorts
private TreeSet theLecturers
private TreeSet theModules

Requirements()
addCohort()
addLecturer()
addModule()
getLecturersIterator()
getCohortsIterator()

Lecturer
private String theIdentifier
private String theModules

Lecturer()
addModule()
getModulesIterator()
getModules()
getIdentifier()
compareTo()
toString()

Timetable
private ArrayList theNodes
private int[] theClashingNodes
private Requirements theRequirements
private Timeslots theTimeslots
private Timetable.Node[] theNodes

Timetable()
sortBySize()
sortByClashes()
addModule()
addManyConstraints()
addConstraint()
getModules()
moduleCount()
assignTimeslot()
assignRoom()
assignRoom()
getModulesInTimeslot()
printPenaltySummary()
localFitness()
fitness()
isTUnallocated()
isRUnallocated()
numClashes()
getCohortTimetable()
getLecturerTimetable()
getClashingNodes()
clone()
reset()
greedyRoomAllocate()
greedyRoomAllocate()
getNodes()
getNode()
getFlatTimetable()

Module
private String theIdentifier
private String theLongName
private String theSessionName
private int theRoomType
private int theRoomSize
private int theLength
private Vector theLecturers
private Vector theCohorts

Module()
Module()
getIdentifier()
getName()
getType()
getRoomSize()
getLength()
alterRoomSize()
addLecturer()
addCohort()
getLecturers()
getCohorts()
compareTo()
toString()

Cohort
private String theIdentifier
private String theLongName
private int theSize
private TreeSet theModules

Cohort()
getModulesIterator()
compareTo()
getIdentifier()
toString()
addModule()
removeModule()
getModules()

Timetable.Node
public Module theModule
public int theTimeslot
public Room theRoom
public TreeSet theNeighbours

public Node()
public Module getModule()
public int compareTo()

Room
private String theIdentifier
private int theCapacity
private int theType

Room()
getCapacity()
getIdentifier()
getType()
compareTo()
toString()
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C.2. GA Classes

IntegerChromosome
protected int[] theAlleles
protected int RANGEMAX

public IntegerChromosome()
protected void setRangeMax()
protected void setAlleles()
public void averageCrossover()
public void heuristicCrossover()
public void mutateConvex()
public void mutateCreep()

TTChromosomeA
private double theFitness;
private Timetable theTimetable;
private Timeslots theTimeslots;
private Requirements theRequirements;

public TTChromosomeA()
public void fitnessCalc()
public void copyToTimetable()

TTChromosomeB
private double theFitness;
private Timetable theTimetable;
private Timeslots theTimeslots;
private Requirements theRequirements;

public TTChromosomeB()
public void fitnessCalc()
public void copyToTimetable()

TTChromosomeD
private double theFitness;
private Timetable theTimetable;
private Timeslots theTimeslots;
private Requirements theRequirements;
public static int COUNTDOWN;

public TTChromosomeD()
public void fitnessCalc()
public void copyToTimetable()
public void localSearch()

Population
private Chromosome[] thePopulation;

public Population()
private ArrayList rouletteSelection()
private ArrayList susSelection()
private ArrayList tournamentSelection()
private void eliteSelection()
public double minimumFitness()
public double averageFitness()
public double averageFitnessWindowed()
public double maximumFitness()
public void evolve()
public Chromosome[] getChromosomes()

Chromosome

public double fitness()
public void reset()
public void mutate()
public void crossover()
public void crossover()
public void fitnessBasedScanCrossover()
public Object clone()
public int compareTo()

1..n0 1..n0
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Appendix D. Sample Timetables

Some example timetables viewed in the debugging GUI. Note that in the last 
couple there are “nameless” classes – these are artefacts from the source 
timetable data. All timetables have an hour within the lunch period, 
lectures/tutorials have been correctly assigned to the right room type, as have
labs. Wednesday afternoons have not been avoided in all cases – this could 
be rectified by setting a higher finishing fitness (so more soft constraints have 
to be met) or by adjusting the weights of the constraints.
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Appendix E. Data from Experiments

E.1. Fractional Factorial – Algorithms A and B

Population
Size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation
Creep 
Step

Selection 
Method

Best fitness
found by A 
in 200 gens

Best fitness
found by B 
in 200 gens

100 0.02 0.25 20 1 Tournament 0.002043 0.001646
100 0.02 0.75 20 1 Tournament 0.0023 0.001754
500 0.02 0.75 2 10 Tournament 0.00264 0.001892
100 0.2 0.75 20 1 Boltzmann 0.001892 0.001477
100 0.2 0.25 2 1 Tournament 0.002115 0.001682
500 0.2 0.75 2 1 Boltzmann 0.001975 0.001505
500 0.2 0.75 20 10 Tournament 0.002507 0.001539
500 0.02 0.75 20 10 Tournament 0.002451 0.001744
100 0.02 0.75 2 1 Boltzmann 0.002022 0.001517
100 0.2 0.25 2 10 Boltzmann 0.00194 0.00151
100 0.02 0.25 20 10 Tournament 0.002077 0.001654
500 0.02 0.25 2 10 Boltzmann 0.002046 0.001623
500 0.2 0.75 20 1 Boltzmann 0.001949 0.001482
500 0.2 0.25 2 1 Boltzmann 0.00203 0.001535
500 0.02 0.25 2 1 Boltzmann 0.00204 0.00158
500 0.02 0.25 2 1 Tournament 0.002277 0.00173
500 0.02 0.75 2 10 Boltzmann 0.001944 0.001535
100 0.02 0.25 2 10 Tournament 0.002015 0.001587
100 0.2 0.75 2 10 Boltzmann 0.001949 0.001497
500 0.02 0.75 20 1 Tournament 0.002495 0.001784
100 0.2 0.75 20 10 Boltzmann 0.001885 0.001478
500 0.2 0.75 2 10 Tournament 0.002365 0.001627
100 0.02 0.25 20 10 Boltzmann 0.001968 0.001572
500 0.2 0.25 2 10 Tournament 0.002281 0.001792
100 0.02 0.25 20 1 Boltzmann 0.002015 0.001569
100 0.02 0.25 2 10 Boltzmann 0.001996 0.00158
100 0.2 0.25 2 10 Tournament 0.002111 0.001658
100 0.2 0.25 2 1 Boltzmann 0.001966 0.001506
100 0.02 0.75 20 10 Tournament 0.002305 0.001774
500 0.02 0.75 2 1 Boltzmann 0.001976 0.001527
500 0.2 0.75 20 1 Tournament 0.002495 0.001784
500 0.02 0.75 20 10 Boltzmann 0.001915 0.00151

E.2. Fractional Factorial – Algorithm D

Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation
Creep 
Step

Selection 
Method

Local 
Search 
Iterations

Best fitness 
found by D 
in 200 gens

100 0.2 0.25 2 1 Tournament 10 0.001666
100 0.2 0.25 20 10 Boltzmann 2 0.001509
100 0.02 0.75 2 1 Boltzmann 2 0.001661
500 0.02 0.25 20 1 Tournament 2 0.001821
500 0.02 0.75 20 1 Boltzmann 2 0.001516
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Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation
Creep 
Step

Selection 
Method

Local 
Search 
Iterations

Best fitness 
found by D 
in 200 gens

500 0.02 0.25 2 10 Tournament 2 0.001747
100 0.2 0.25 20 1 Boltzmann 10 0.001499
100 0.2 0.75 20 1 Boltzmann 2 0.001476
500 0.02 0.25 20 1 Boltzmann 10 0.001512
100 0.02 0.75 2 10 Boltzmann 10 0.001569
100 0.02 0.25 20 1 Boltzmann 2 0.001569
500 0.2 0.25 2 10 Boltzmann 2 0.001507
100 0.02 0.75 2 10 Tournament 2 0.001645
500 0.2 0.75 2 1 Boltzmann 2 0.001476
100 0.2 0.25 20 10 Tournament 10 0.00163
100 0.2 0.75 20 10 Boltzmann 10 0.001469
100 0.02 0.75 20 1 Tournament 2 0.001773
100 0.2 0.75 2 10 Boltzmann 2 0.001512
500 0.2 0.25 20 1 Boltzmann 2 0.001503
500 0.2 0.75 20 1 Boltzmann 10 0.001478
100 0.02 0.25 2 10 Tournament 10 0.001598
500 0.02 0.75 2 10 Boltzmann 2 0.001537
500 0.02 0.75 2 10 Tournament 10 0.001857
500 0.2 0.75 2 1 Tournament 10 0.001733
100 0.2 0.25 2 1 Boltzmann 2 0.001516
500 0.2 0.25 20 10 Boltzmann 10 0.001482
100 0.02 0.25 20 1 Tournament 10 0.00164
500 0.02 0.25 20 10 Tournament 10 0.001811
500 0.02 0.75 20 10 Boltzmann 10 0.001507
500 0.02 0.75 20 1 Tournament 10 0.001809
500 0.02 0.25 2 10 Boltzmann 10 0.001588
100 0.02 0.2 20 1 Boltzmann 10 0.001493

E.3. Response Surface – Algorithms A and B

Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation 
Creep 
Step

Best fitness 
found by A in
200 gens

Best fitness
found by B 
in 200 gens

500 0.11 0.5 11 6 0.002302 0.001623
300 0.11 0.5 29 6 0.002393 0.001691
300 0.11 0.5 11 6 0.002305 0.001696
500 0.2 0.25 2 10 0.002278 0.001787
100 0.02 0.75 20 10 0.002278 0.001753
300 0.29 0.5 11 6 0.002137 0.001559
500 0.02 0.75 20 1 0.002764 0.0018
500 0.02 0.25 2 1 0.002199 0.001719
300 0.11 0.5 11 6 0.002305 0.001696
300 0.11 0.5 1 6 0.002213 0.001675
300 0.11 1 11 6 0.002168 0.001562
300 0.11 0.5 11 6 0.002305 0.001696
100 0.2 0.75 20 1 0.002215 0.00161
300 0.11 0.5 11 6 0.002305 0.001696
300 0.11 0.5 11 6 0.002305 0.001696
500 0.02 0.25 20 10 0.002318 0.00182
500 0.2 0.25 20 1 0.002302 0.001777
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Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation 
Creep 
Step

Best fitness 
found by A in
200 gens

Best fitness
found by B 
in 200 gens

300 0.11 0 11 6 0.002032 0.001635
100 0.2 0.25 2 1 0.002104 0.001696
300 0.11 0.5 11 1 0.002291 0.00152
100 0.2 0.75 2 10 0.002064 0.001629
500 0.2 0.75 20 10 0.002395 0.001549
500 0.02 0.75 2 10 0.002453 0.001904
300 0.11 0.5 11 6 0.002305 0.001696
100 0.02 0.25 2 10 0.00202 0.001583
100 0.11 0.5 11 6 0.002157 0.001753
300 0.01 0.5 11 6 0.00231 0.001818
100 0.02 0.25 20 1 0.002059 0.001636
500 0.2 0.75 2 1 0.002451 0.001747
100 0.2 0.25 20 10 0.002098 0.001657
300 0.11 0.5 11 10 0.002285 0.00171
100 0.02 0.75 2 1 0.002191 0.001714

E.4. Response Surface – Algorithm D

Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation
Creep 
Step

Local 
Search 
Iterations

Best fitness 
found by D 
in 200 gens

300 0.2 0.5 11 6 6 0.001567
384 0.14784 0.605112 15 4 4 0.001642
300 0.11 0.5 11 6 10 0.00172
300 0.11 0.5 11 6 6 0.001635
300 0.11 0.5 11 6 6 0.001635
384 0.07216 0.394888 15 4 4 0.001837
300 0.11 0.5 11 10 6 0.001631
384 0.14784 0.394888 15 6 7 0.001764
384 0.14784 0.605112 15 7 7 0.001459
384 0.14784 0.605112 7 4 7 0.001508
300 0.11 0.5 11 6 1 0.0015
300 0.11 0.5 11 6 6 0.001527
216 0.07216 0.394888 15 4 7 0.001711
216 0.07216 0.605112 15 4 4 0.001623
300 0.11 0.5 2 6 6 0.00169
216 0.14784 0.605112 7 7 7 0.001469
384 0.07216 0.605112 7 7 7 0.001561
216 0.07216 0.605112 7 7 4 0.001577
216 0.07216 0.605112 15 7 7 0.001619
216 0.14784 0.394888 15 4 4 0.00157
300 0.11 0.5 11 6 6 0.001527
300 0.11 0.5 11 1 6 0.001622
384 0.07216 0.605112 15 7 4 0.00151
216 0.14784 0.605112 15 4 7 0.001507
216 0.14784 0.605112 15 7 4 0.001481
384 0.07216 0.605112 7 4 4 0.0016
300 0.11 0.5 20 6 6 0.001591
384 0.07216 0.394888 7 4 7 0.001669
216 0.14784 0.394888 15 7 7 0.001631
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Population
size

Mutation
Rate

Crossover
Rate

Crossover
Points

Mutation
Creep 
Step

Local 
Search 
Iterations

Best fitness 
found by D 
in 200 gens

300 0.02 0.5 11 6 6 0.001663
216 0.14784 0.394888 7 4 7 0.001574
216 0.07216 0.394888 7 4 4 0.001605
100 0.11 0.5 11 6 6 0.001566
300 0.11 0.75 11 6 6 0.001477
384 0.14784 0.605112 7 7 4 0.001481
384 0.07216 0.394888 15 7 7 0.001641
384 0.07216 0.605112 15 4 7 0.001563
384 0.14784 0.394888 15 7 4 0.001531
216 0.14784 0.394888 7 7 4 0.001712
300 0.11 0.5 11 6 6 0.001635
216 0.07216 0.394888 7 7 7 0.00179
216 0.07216 0.605112 7 4 7 0.00176
300 0.11 0.5 11 6 6 0.001614
300 0.11 0.5 11 6 6 0.00152
384 0.14784 0.394888 7 7 7 0.001489
300 0.11 0.5 11 6 6 0.00152
216 0.07216 0.394888 15 7 4 0.001694
500 0.11 0.5 11 6 6 0.00152
300 0.11 0.5 11 6 6 0.00152
216 0.14784 0.605112 7 4 4 0.001476
384 0.14784 0.394888 7 4 4 0.001497
384 0.07216 0.394888 7 7 4 0.001699
300 0.11 0.25 11 6 6 0.001607

E.5. Confirmation Experiment

Run 10 times, these results were produced.

Best fitness found 
by A in 200 gens

Best fitness found 
by B in 200 gens

Best fitness found 
by D in 200 gens

0.002549 0.001694 0.001612
0.002432 0.001691 0.001587
0.002467 0.001732 0.001464
0.002492 0.001597 0.001633
0.002437 0.001714 0.001592
0.002530 0.001610 0.001599
0.002426 0.001712 0.001652
0.002408 0.001720 0.001594
0.002530 0.001688 0.001631
0.002420 0.001720 0.001597
0.002486 0.001671 0.001655

E.6. Comparison Experiments

Each of the comparison experiments (repeated 10 times for each algorithm)
ran to several thousand generations. This is too large a quantity of data to
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realistically reproduce here; the output from the experiments may be found in
the output folder on the accompanying CD.
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