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Abstract

Taxiing remains a major bottleneck at many airports. Recently, several approaches to
allocating efficient routes for taxiing aircraft have been proposed. The routing algorithms
underpinning these approaches rely on accurate prediction of the time taken to traverse
each segment of the taxiways. Many features impact on taxi time, including the route
taken, aircraft category, operational mode of the airport, traffic congestion information,
and local weather conditions. Working with real-world data for several international
airports, we compare multiple prediction models and investigate the impact of these
features, drawing conclusions on the most important features for accurately modelling
taxi times. We show that high accuracy can be achieved with a small subset of the
features consisting of those generally important across all airports (departure/arrival,
distance, total turns, average speed and numbers of recent aircraft), and a small number
of features specific to particular target airports. Moving from all features to this small
subset results in less than a 1 percentage-point drop in movements correctly predicted
within 1, 3 and 5 minutes.

Keywords: air traffic management, feature importance, machine learning, prediction,
taxi time

1. Introduction

The number of flights made globally by the airline industry has increased steadily
since the early 2000s and has reached 39 million in 2019 [1]. Moreover, it is expected
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that passenger numbers could double to 8.2 billion from 2017 to 2037, and importantly,
there will be tighter environmental regulations [2, 3]. This trade-off between increasing
demand of airport capacity and tighter environmental regulations has been recognised as
one of the grand transport challenges [4]. To better address the challenge and limited
capacity offered by the existing airport infrastructure, there is an urgent need to develop
more intelligent and automated airport traffic management systems.

Developing airports’ digital asset twins is the way forward, since it provides a high-
fidelity simulation platform to identify bottlenecks and potential operational failures.
Simply having digital data does not spontaneously move airports towards intelligence
and automation. To realise this, airport traffic management systems based on trajectory-
based taxiing operations deserve further investigation [5, 6]. Aligned with the European
advanced surface movement, guidance and control systems [7] and the US next generation
air transport system programme [8], airport operations based on trajectory-based taxiing
will lead to more accurate and efficient aircraft ground movements. Furthermore, they are
closely interconnected with other airport optimization problems, e.g. runway scheduling,
stand allocation, and airport bus scheduling [9, 10].

In order to realise trajectory-based taxiing operations, accurate taxi time prediction
has played an indispensable role. It is not only important to create more robust schedules
and identify choke points between gate and runway for practitioners, but also helps the
government analysts to estimate the optimal airport capacity and evaluate the regulation
impacts [11]. Various modelling techniques have been utilised in the literature to estimate
and predict the taxi time, e.g., queuing models [12], statistical regression approaches [11],
fuzzy rule-based systems [13] and machine learning techniques [14]. Meanwhile, existing
research has adopted different numbers of features (from 5 up to 42) that may affect taxi
time from different data sources, including Airline Service Quality Performance (ASQP)
and Preferential Runway Assignment System (PRAS) [12, 15], Aviation System Perfor-
mance Metrics (ASPM) [14, 16, 17], Airport Surface Detection Equipment, Model X
(ASDE-X) and Severe Weather Avoidance Programs (SWAP) [18, 19], Spot and Run-
way Departure Advisor (SARDA) [20, 19], FlightRadar24 (FR24) [21]. This leads to a
potential risk that certain features related to the taxi time have not been included. For
instance, only a few publications considered the impact of weather conditions on taxi
time [22, 23, 20], and these relevant studies simply considered the weather conditions as
severe and fine weather. Meanwhile, some defined features are only obtained when the
taxi procedure is completed, which is not realistic for taxi time prediction in practise [11].
Moreover, more information can be obtained through digging into the raw data source,
e.g., defining new metrics to directly reflect the surface traffic congestion [24, 25].

Another drawback we have observed falls in the feature importance identification
process. Although as mentioned, various prediction methodologies have been applied
in this domain, only a few of existing research addressed the identification of feature
importance [26, 27]. Assuming there is no priority information for the features, Jordan
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et al. [26] applied a sub-optimal subset selection method [28] to capture much of the vari-
ability in the data source, though with no guarantee of ensuring high-quality prediction
accuracy. Herrema et al. [27] defined two metrics to rank the candidate features, and
selected the top ten of them as the most important features. Note a sufficient analysis
of the selected features number was not provided. Therefore, there is still a strong need
to better understand which features and to what extent the features affect the taxi time.
We aim to develop a feature importance identification procedure with quantitative anal-
ysis to address this issue, and better underpin subsequent applications of the taxi time
prediction in uncertain airport runway and taxi scheduling problems.

Consequently, the overarching original contributions of this new study include the
following: (1) To the best of our knowledge, a complete feature group for the taxi time
prediction has not been provided; for the first time we introduce a set of weather fea-
tures, aircraft speed and runway utilisation information that may affect the taxi time,
and compare the prediction performance using different models and feature groups. (2) A
backward feature importance identification process with quantitative analysis is applied
to taxi time prediction. (3) The feature importance identification process integrating with
prediction model is validated using real-world freely-available data for three international
airports. (4) We show that the taxi time prediction models only including aircraft de-
parture/arrival, distance, number of existing departure flight, average speed of recent
aircraft and specific features for target airports can provide a high level of accuracy.

This paper is organized as follows: Section 2 provides a comprehensive literature
review in the taxi time prediction; Section 3 introduces three international airports and a
complete set of features that could impact taxi time; the prediction models, performance
metrics as well as the developed feature importance identification process are described in
Section 4, followed by the computational results and discussions presented in Sections 5
and 6; finally, conclusions are drawn in Section 7, highlighting the important contributions
of our work and potential future directions. Appendices listing the abbreviations we use
throughout the paper, and giving standard deviation of the results are also included.

2. Literature Review

To clearly present the state-of-the-art of taxi time prediction methodologies, we
classify the reviewed literature in line with four categories: queuing models, statistical
regression approaches, Fuzzy Rule-Based Systems (FRBSs) and other machine learning
techniques. An overview of the studies in taxi time prediction is listed in Table 1.

The queuing model has been generally utilised in the early research of taxi time
prediction. Pujet et al. [12] and Idris et al. [15] analysed real-world data at Boston Logan
International Airport (BOS) and identified the runway configuration, the airline/terminal,
the downstream restrictions and the takeoff queue size as the main features that affect
the taxi time. Consequently, the queuing models were developed to further improve
the accuracy of taxi time prediction. Simaiakis and Pyrgiotis [22] modelled the aircraft
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Table 1: Overview of the studies in taxi time prediction.
Authors Year Methodology Features considered in the model Data

source
Airport Movements

Pujet et al. [12] 2000 Queuing model Airport operational information, e.g.
scheduled and actual pushback time,
takeoff/landing time and gate arrival
times, and departure/arrival runways and
capacity

ASQP and
PRAS

BOS /

Idris et al. [15] 2002 Queuing model Airport operational information, e.g.
scheduled and actual pushback time,
takeoff/landing time and gate arrival
times, and departure/arrival runways and
capacity, downstream restrictions

ASQP and
PRAS

BOS 26302

Balakrishna
et al. [14]

2008 Reinforcement learn-
ing

5 features including time spent in the
runway queue, the number of depar-
ture/arrival aircraft during taxiing, aver-
age taxi time of the previous half hour,
the time of day

ASPM JFK 254 days

Balakrishna
et al. [16]

2010 Reinforcement learn-
ing

8 features including number of flights fea-
tures, average taxi time features, and
time of day

ASPM TPA ˜132200

Jordan et al. [26] 2010 Linear regression 17 features including taxi distance, num-
ber of flights features, airline, runway di-
rection

Runway
Status
Lights
System

DFW 4720

Simaiakis and Pyrgi-
otis [22]

2010 Analytical queuing
model

Number of flights features, the departure
capacity, and time of day

ASPM BOS
and
EWR

99196

Chen et al. [13] 2011 Fuzzy rule-based sys-
tems

14 features including taxi distance, taxi
turning angle, departure/arrival, number
of flights features, operational modes

Airport ZRH 679

Srivastava [18] 2011 Linear regression
model

Taxi distance, number of flights features,
average taxi time of the previous quarter,
severe weather or not

ASDE-X
and SWAP

JFK 43 days

Diana [23] 2013 Survival and frailty an-
alytical models

Airport operational information,
e.g.block delay, departure/arrival delay
and percentage of capacity utilized, good
weather or not

ASQP JFK 1250

Ravizza et al. [11] 2013 Multiple linear regres-
sion

15 features including taxi distance, taxi
turning angle, departure or arrival, num-
ber of flights features and some less im-
portant factors

Airports ARN
and
ZRH

1340

Ravizza et al. [24] 2014 Multiple linear re-
gression, least median
squared linear re-
gression, support
vector regression, M5
model trees and fuzzy
rule-base systems

16 features including taxi distance, taxi
turning angle, departure or arrival, num-
ber of flights features and some less im-
portant factors

Airports ARN
and
ZRH

7607

Lee et al. [20] 2015 Linear optimized
sequencing, linear
regression, support
vector machines, k-
nearest neighbors and
random forest

Taxi distance, assigned gate, spot and
runway, number of flights features

SARDA CLT 332

Lee et al. [19] 2016 Linear regression, sup-
port vector machines,
k-nearest neighbors,
random forest and
neural networks

12 features including terminal concourse,
gate, spot, runway, departure fix, air-
craft model, aircraft weight, taxi dis-
tance, time of day, number of flights fea-
tures and unimpeded taxi time

SARDA
and ASDE-
X

CLT 246083

Lordan et al. [29] 2016 Linear regression 15 features including gate, runway, depar-
ture or arrival, number of flights features

Airport BCN 35858

Chen et al. [21] 2017 Multi-objective fuzzy
rule-based systems

same as Ravizza 2013 FR24 MAN 1413

Diana [17] 2018 Ensemble machine
learning, ordinary
least-squared and
penalized algorithms

5 features including departure de-
mand/throughput, percentage of airport
capacity utilised, approach conditions
and runway configurations

ASPM SEA 2760

Herrema et al. [27] 2018 Neural networks,
regression tree, rein-
forcement learning and
multilayer perceptron

42 features including operational infor-
mation, congestion/capacity level, unim-
peded taxi time and number of departures

Airport CDG ˜1 million

Lian et al. [30] 2018 Two improved sup-
port vector regression
methods, generalized
linear regression,
softmax regression
and artificial neural
network

6 features including taxi distance, num-
ber of flights features, delay and take-
off/pushback times

Airport PEK 17 days

Yin et al. [25] 2018 Machine learning with
a macroscopic network
topology

21 features including surface instanta-
neous flow indices, cumulative flow in-
dices, aircraft queue indices and slot re-
source demand indices

Airport PVG /

Mirmohammadsadeghi
et al. [31]

2019 Statistic regression,
percentiles method
and data surveillance

5 features including speed, waiting time,
departure runway and wheels-on/off

ASDE-X CLT
et al.

/
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departure process as a queuing system, aiming to predict taxi time through analytic
taxiway and runway queues approximations. This developed runway queuing model is
stochastic and easily transferred to different airports; it has been validated against real
data at BOS and Newark Liberty International Airport (EWR).

Meanwhile, statistical regression approaches have been applied in the taxi time pre-
diction. Jordan et al. [26] presented a statistical linear regression (LR) approach to mod-
elling aircraft taxi time at Dallas/Fort Worth Airport (DFW). Combining with a feature
selection method, the developed model achieved 98.3% prediction accuracy within 3 min
absolute error. Notice only data on good weather days were applied to train and test the
model. Building on a historical traffic flow database, Srivastava [18] established an adap-
tive taxi time prediction model with LR analysis, where a set of explanatory variables
including aircraft queue position, taxi distance are included. Using actual data from John
F. Kennedy International Airport (JFK), the prediction model has been demonstrated
with high accuracy.

Combining both airport layout and historic taxi time information, Ravizza et al. [11]
presented a taxi time prediction model with a multiple linear regression (MLR) analysis.
Data from Stockholm-Arlanda Airport (ARN) and Zurich Airport (ZRH) was utilized
for the experiments, and the taxi distances, the sum of turning angle, aircraft departures
or arrivals and the amount of traffic when the aircraft is taxiing were identified as the
important features for taxi time prediction. Furthermore, various regression approaches
including MLR and least-medium-squared LR were testified in [24]. Inspired by [11],
Lordan et al. [29] considered route- and interaction-specific features and designed a log-LR
model for taxi time prediction at Bacrelona-EI Airport (BCN). Experimental results have
verified the strong predictive validity of the proposed model, while a sample size covering
an extensive airport operational period is required. Recently, Mirmohammadsadeghi
et al. [31] introduced a regression method, which is being applied by the Federal Aviation
Administration for unimpeded taxi time estimation.

FRBSs [32], which can offer more explanations of the underlying behavior, were in-
troduced for taxi time prediction by Chen et al [13]. The results at ZRH indicate that
FRBSs are a valuable alternative to existing statistical methods. Detailed comparisons
including various regression approaches and FRBSs were conducted in [24], demonstrat-
ing the FRBSs outperformed other approaches in terms of prediction accuracy at ZRH.
To address the prediction accuracy as well as associated uncertainty, Chen et al. [21]
further developed a multi-objective FRBS based approach for taxi time prediction at
Manchester Airport (MAN), in which the structure of the FRBS was simplified and only
one predominate rule accounted for one taxi scenario.

In addition to FRBSs, other machine learning techniques also contribute to the taxi
time prediction literature. Based on one of the busiest US airport JFK, Balakrishna
et al. [14] designed a probabilistic framework with reinforcement learning (RL) strategy
to predict the aircraft taxi time. The results indicated the RL estimator is capable to
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capture the dynamics at challenging airports such as JFK, while the prediction accuracy
on individual flight needs to be improved. Furthermore, Balakrishna et al. [16] conducted
a case study at Tampa International Airport (TPA), realising 81% prediction accuracy
with a standard error of 2 min.

Lee et al. [20] applied the linear optimized sequencing approach to develop a discrete-
event fast-time simulation tool for taxi time prediction. A data-driven analytical method
using four machine learning techniques is introduced for comparison as well. These meth-
ods were evaluated with actual data at Charlotte Douglas International Airport (CLT),
and experiments indicate that the developed simulation tool is competitive. Lee et al. [19]
further considered weather conditions at CLT to improve the taxi time prediction. How-
ever, simulation results indicate that the prediction accuracy has not been improved. The
reason could be that the weather conditions were simply divided into good weather and
rainy days, and other weather properties such as wind, visibility and temperature have
not been investigated.

Assuming the taxi time is a function of several features which may not be expressed
in existing models, Diana [23] conducted a survival and frailty analysis, and revealed
the block delay and capacity utilisation percentage would impact the taxi time as well.
A comprehensive comparison of various prediction models was then presented at Seattle
International Airport (SEA) [17]. The ensemble machine learning, ordinary least-squared
and penalized approaches were testified and the results suggest that no algorithm outper-
forms others in all cases, and one should strike a balance between the prediction bias and
variance. Herrema et al. [27] focused on Neural Networks (NN), Regression Tree (RT),
RL and multilayer perceptron (MLP) methods for the taxi time prediction at Charles de
Gaulle Airport (CDG). The top 10 out of 42 features, e.g., unimpeded taxi time, conges-
tion level, and number of departures in the last 20 minutes were chosen in the feature
selection process, and RT turned out to be the most efficient method.

Comparing with traditional taxi time prediction methods, e.g., LR, softmax regres-
sion and NN, Lian et al. [30] developed two improved support vector regression (SVR)
approaches in a case study of Beijing International Airport (PEK). Several features in-
cluding queue length, taxi distance and potential landing number were identified, and a
high prediction accuracy up to 95% within 5 minutes was achieved. Based on a macro-
scopic network topology, Yin et al. [25] formulated the taxi time relevant features into
four groups: surface instantaneous flow, cumulative flow, aircraft queue length and slot
resource demand. Three machine learning methods including LR, SVR and Random
Forest (RF) were then applied in the taxi time prediction. Using the historical data at
Shanghai Pudong International Airport (PVG), computational results demonstrated the
effectiveness of the proposed features and machine learning techniques.

Throughout the above literature review, we can identify the gaps in the current re-
search for taxi time prediction as follows: due to the incomplete data source, several
features that may influence the taxi time have not been comprehensively investigated.
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For instance, although existing literature noticed the presence of weather conditions, the
weather features were simply classified as severe/ fine weather [22, 23, 20]. Meanwhile,
to ensure taxi time prediction accuracy and underpin robust airport traffic management,
e.g., airport ground movement routing/scheduling and runway scheduling, the feature
importance identification with quantitative analysis requires to be further addressed. We
aim to fill these gaps in this research.

3. Data

This study utilises data from three international airports in Europe and Asia: Manch-
ester Airport (MAN), the third biggest airport in the UK; Zurich Airport (ZRH), the
largest airport in Switzerland; Hong Kong International Airport (HKG), ranking among
the global top ten busiest airports. The layout of the three airports are illustrated in
Figure 1. The real-world aircraft movement information is taken from freely-available
data on the website FlightRadar24, following the techniques described in [33, 34] (The
tools are available at https://github.com/gm-tools/gm-tools). FlightRadar24, which
has also been used to gather airborne flight tracks [35, 36, 37, 38], collects automatic de-
pendent surveillance-broadcast (ADS/B) messages transmitted by many aircraft. These
messages contain the latitude, longitude and altitude, usually every 5 to 10 seconds. The
coordinates have a resolution of 10−4 degrees: approximately 10m for our target airports.
While not all aircraft broadcast ADS/B data, and of the broadcast data has calibration
errors or corruptions needing cleaned before use, enough flight movements are present
to allow reliable taxi time estimation models to be derived. For this work, all tracks
for aircraft with an altitude of zero within 5km of each airport’s centre were collected.
The raw tracks were snapped to the actual taxiways by searching for all taxiways within
10m of each coordinate and deriving the most likely route taken, taking the shortest
path between the coordinate points from ADS/B except where those lead to sharp turns.
Each movement contained the taxi route taken and the real time at the start and end.
The corresponding weather information is extracted from the METAR Weather Service
(https://www.aviationweather.gov/metar). We accessed 14 872 movements data for
MAN from 21st Jan 2017 to 13rd Apr 2017, 19 808 movements for ZRH from 21st Jan
2017 to 18th Mar 2017, and 42 397 movements for HKG from 15th Jan 2017 to 21st Feb
2017. After snapping these raw movements to the known taxiways at each airport, the
data contained 10 216, 11 271 and 33 095 tracks for MAN, ZRH and HKG respectively;
the missing tracks did not have enough points aligned with the taxiways for the taxi
routes to be determined with certainty. These were further reduced to 10 210, 11 248 and
33 060 tracks after removing any taxi routes longer than 45 minutes (substantial outliers
and deemed to be erroneous).

For the purposes of this study, we consider taxi-time to be the actual push-back time
to the actual line-up time for departures, and the actual time of leaving the runway to the
actual on-block time for arrivals. The average taxiing times at MAN, ZRH, HKG are 9.6,
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6.6 and 11.3 minutes respectively. Notice the movements without complete information
(i.e. full path between runway and stand) have been removed in advance.

(a) MAN (b) ZRH (c) HKG

Figure 1: Sketches of the layout at three airports.

In order to ensure taxi time prediction accuracy, one should comprehensively consider
relevant features that may affect taxi time. In this study, we use up to 33 features, aiming
to provide a sufficient set of features for the taxi time prediction. These relevant features
are divided into four categories, including aircraft and airport operational factors, airport
congestion, aircraft average speed and weather information.

3.1. Aircraft and airport operational features

Eight aircraft and airport operational features which can be easily extracted from
the raw data are listed in Table 2. The binary feature depArr indicates whether the
movement is a departure or arrival flight. Distance is the entire taxi distance from the
gate to the runway; distance long is the sum of straight taxiway lengths exceeding 500
metres. Two features related to aircraft turning angles that may affect the taxi speed
are included in the prediction model as well. Besides, aircraft weight has been considered
as a potential candidate factor for taxi time prediction [11, 27]. In line with the aircraft
wake vortex [39], we introduced feature aircraft weight to categorise the aircraft as small,
medium and large.

The runway info feature reflects which runway as well as which direction is used
for aircraft landing or take-off. For instance, as shown in Figure 1(a), MAN has two
runways for aircraft departure and arrival. Typically the two runways are both used
from 6 am to 10 pm of the day, while only one runway is utilised for the rest of the day.
During the dual runway operation, the aircraft normally use runway 23L/R for arrival and
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Table 2: Features of aircraft and airport operational information.

Features Type Description

depArr Binary Departure(0) or arrival(1)

distance Numerical Sum of taxi distance in metres

distance long Numerical Sum of taxi distance in metres on straights of more than 500 metres

angle sum Numerical Sum of turning angle in degrees

angle error Numerical Count of 180 degree turns (usually 0, or 1 corresponding to a pushback)

aircraft weight Categorical Aircraft weight category: small, medium and large

runway info Categorical Aircraft runway information category

budget airline Binary Budget (0) or non-budget (1) airline

departure, while it might use runway 05L/R when the wind direction changes. Therefore
we define 2 × 4 = 8 runway information categories for MAN, where 2 indicates two
runway operation conditions, and 4 the two directions of the two runways. This identifies
the specific runway used by each flight. We use this in contrast to the more course-
grained ‘operating mode’ (i.e. which runways were in use at the time of the flight) as it
also services to indicate which area of the airport in which the aircraft either began or
completed taxiing. Similarly, ZRH has 6 runway info types since there are two directions
of three runways. For HKG, 4 runway info modes are categorised given two directions of
two runways.

The last feature of aircraft information is budget airline, aiming to investigate whether
budget airline flight would impact taxi time for economic reasons. In this research,
Ryanair and easyJet are categorised as budget airlines, while others as non-budget air-
lines.

3.2. Airport congestion features

The airport congestion features are first introduced to the taxi time prediction in [11,
24] inspired by the queuing model [15]. These features shown in Tables 3 and 4 have been
demonstrated as effective factors to improve taxi time prediction performance. Eight
features are designed to represent the airport congestion conditions via counting the
number of arrivals and departures during the time the current aircraft is taxiing for
departure or arrival. Note the features in Table 3 indicate the congestion information
when the current aircraft starts taxiing, while the ones in Table 4 denote the congestion
conditions until current aircraft has completed the movement.

The information of the features in Table 4 can only be obtained when the aircraft
has completed its taxiing process. Therefore, these features actually cannot be utilised
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Table 3: Features of airport congestion information.

Features Type Description

NDepDep Numerical Number of other aircraft on the way to runway when cur-
rent aircraft pushes back

NDepArr Numerical Number of other aircraft on the way to stand when current
aircraft pushes back

NArrDep Numerical Number of other aircraft on the way to runway when cur-
rent aircraft lands and starts taxiing

NArrArr Numerical Number of other aircraft on the way to stand when current
aircraft lands and starts taxiing

Table 4: Features of airport historical congestion information.

Features Type Description

QDepDep Numerical Number of other aircraft that reach runway
and depart while current aircraft is on the way
to runway

QDepArr Numerical Number of other aircraft that arrive at stand
while current aircraft is on the way to runway

QArrDep Numerical Number of other aircraft that reach runway
and depart while current aircraft is on the way
to stand

QArrArr Numerical Number of other aircraft that arrive at stand
while current aircraft is on the way to stand
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for practical taxi time prediction. In light of this, we only choose the congestion features
listed in Table 3, excluding the historical congestion information in Table 4.

Given the aircraft queuing length could have more impact on the taxi time of de-
parture flight [12, 24], we expect features QDepDep and QDepArr could have stronger
contributions to the models compared to QArrDep and QArrArr.

3.3. Aircraft average speed features

Table 5: Features of aircraft average speed information.

Features Type Description

AvgSpdLast5Dep Numerical Average speed of latest departing 5 aircraft

AvgSpdLast5Arr Numerical Average speed of latest 5 arriving aircraft

AvgSpdLast5 Numerical Average speed of latest 5 aircraft

AvgSpdLast10Dep Numerical Average speed of latest departing 10 aircraft

AvgSpdLast10Arr Numerical Average speed of latest 10 arriving aircraft

AvgSpdLast10 Numerical Average speed of latest 10 aircraft

The taxi speed of other moving aircraft can reasonably be expected to be related
to the actual taxi time, acting as a proxy for many other factors influencing the taxi
speed. The idea is that average speed of other aircraft is easy to calculate and might
capture confounding factors that are difficult to explicitly measure. Thus, it is somewhat
surprising that, until now, the features relevant to the speed of other aircraft have not
been studied in the literature. We are the first to introduce the speed features into taxi
time prediction, through defining six average speed features as shown in Table 5, where
the units are metre per minute. Notice we collect the latest average speed for departure,
arrival or both of them. This is because that the previous research indicated the airport
congestion conditions of departure aircraft have larger impact on the taxi time [24].
In case the average speed features also have different impacts on departure and arrival
aircraft, we define these speed features for departure and arrival aircraft respectively,
better capturing the influence of speed features on the taxi time. Precisely how many
aircraft should be counted for these features is somewhat arbitrary, so we explored two
numbers (5 and 10) to determine whether the number made much difference. Similar
to the airport congestion features, the average speed features related to departure flight,
e.g., AvgSpdLast5Dep and AvgSpdLast10Dep, are expected to have more contributions to
the taxi time predictions compared to arrival related features.

3.4. Weather information features
Although existing research did not indicate close correlation between the weather

conditions and taxi time [22, 23, 20], it is expected that the airport local weather con-
ditions should impact the taxi time to some extent [11, 27, 17]. To better address and
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Table 6: Features of weather conditions.

Features Type Description

Pressure Numerical Air pressure in inHg

Temperature Numerical Temperature in Celsius

WindSpeed Numerical Wind speed in metres per second

Visibility Numerical Visibility in metres

isRain Binary Whether it is raining

isSnow Binary Whether it is snowing

isDrizzle Binary Whether it is drizzling

isFog Binary Whether it is fogging

isMist Binary Whether it is misting

isHaze Binary Whether it is hazing

isHail Binary Whether it is hailing

analyse possible influence of the weather conditions on aircraft taxi time, a list of eleven
weather features rather than simply defining bad/fine weather are presented in Table 6.
The abundant weather information is promising to reveal potential relations between the
weather conditions and taxi time. However, as the flight could be postponed or cancelled
under extreme weather conditions, e.g., blizzard or heavy rains, the collected aircraft
taxiing data probably does not include terribly bad weather. This could limit the impact
of the weather conditions on taxi time prediction.

4. Prediction models and feature importance

In this section, five prediction models are introduced for predicting the taxi time,
and seven performance metrics are adopted to address and compare the model perfor-
mance. We also develop a feature importance identification procedure, aiming to identify
important features and provide high prediction accuracy with a narrow subset of features.

4.1. Models

The selection of prediction models could impact the prediction performance. In this
study, we introduce five models for taxi time prediction, specifically MLP, LR, Polynomial
Regression (PR), Gradient Boosted Regression Trees (GBRT) and RF.

4.1.1. Multilayer perceptron

NNs are brain inspired models which allow a machine to learn from available data [40].
As a class of feedforward artificial NN, MLP consists of at least three layers of nodes:
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an input layer, a number of hidden layers and an output layer. The nodes are connected
between each layer with different weight. Except for the input nodes, each node is
a neuron that uses a nonlinear activation function. For instance, the commonly used
activation function is constructed as

y(v) = max(0, v) (1)

where v is the input and y(v) denotes the output.
MLP trains the network by using back propagation [41], which is widely utilised for

a general NN.

4.1.2. Linear regression

The concept of LR is that there is a relationship between an independent feature
and a dependent one. If the two variables move in the same direction, then there is a
positive relationship between the two variables. On the other hand, if the independent
variable increases and the dependent variable reduces (and vice versa), there is a negative
relationship between the two variables.

The general linear regression formula is the following:

ŷ = αx+ β (2)

where ŷ is the prediction output, x is the vector of input features, α and β are coefficients
vectors.

When fitting this model, we aim to find α and β that minimize the defined cost
function, e.g. the ordinary least squares as

min
1

2

n∑
i=1

(yi − ŷi)2 (3)

where yi and ŷi are the ith actual and predictive output values respectively, and n is the
number of data samples.

4.1.3. Polynomial regression

PR is a technique of regression analysis, where the relationship between the dependent
feature and the independent feature is described by certain polynomial degrees in the
dependent variable. LR is a special case of PR, in which the polynomial order equals
one. This method is beneficial for describing curvilinear relationships, while it may easily
be over-fitted. Therefore one should carefully select the polynomial orders for PR. The
model with nth order polynomial regression is constructed as

ŷ = β0 + β1x+ β2x
2 + · · ·+ βmx

m (4)
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where ŷ is the prediction value, xz = {xz1, xz2, . . . , xzf}(z = 1, 2, . . . ,m) are the zth poly-
nomial input features, f is the number of input features and βi(i = 0, 1, . . . ,m) are
regression coefficients.

Similar to LR, the coefficients of the PR model are determined by minimising the cost
function, e.g. the ordinary least squares.

4.1.4. Gradient boosting regression trees

GBRT is a flexible non-parametric statistical learning technique for regression. It
builds the model in a stage-wise fashion, and allows optimization of an arbitrary differ-
entiable cost function [42].

Like other boosting methods, gradient boosting combines weak learners into a single
strong learner in an iterative manner. At each stage s of the gradient boosting, there exists
a current prediction model Fs that can be further improved. Through adding an estimator
h, a more accurate prediction model is obtained by constructing Fs+1(x) = Fs(x) + h(x).
This implies that the selection of estimator h can be expressed as

h(x) = y − Fs(x) (5)

where y is the actual output value.
Specifically, the gradient boosted regression tree, i.e. GBRT, has been widely used

due to its efficiency, accuracy and interpretability [43], making it a promising approach
to accurately predict the aircraft taxi time. GBRT builds a series of regression trees,
statistical models generated for supervised prediction problems. They make their predic-
tions by a series of decisions represented in a tree structure, in which each node is a split
in the possible values for one feature. The benefit of decision tree regression is that it is
easy to interpret and visualise, and can possibly reveal patterns which may be difficult
in being identified through traditional regression methods.

4.1.5. Random Forest

RF is a prediction model made up of many decision trees [44, 45]. RF can usually
generate good results even without tuning the hyperparameters [46]. Each tree in a RF
learns from a set of randomly sampled data during the training process, a technique
known as bagging. Notice the samples would be repeatedly applied in a single tree, so
that the entire forest will have lower variance without increasing the bias. The outputs
of RF are obtained through averaging predictions of each decision tree in RF.

Whilst decision trees search for a split on each feature in each node, RF investigates
for a split on only one feature in a node. First, a small subgroup of explanatory features is
randomly selected. Next the node is split with the best feature among the small number
of randomly selected features. After splitting, a new list of eligible features is chosen
arbitrarily. This process continues until the tree is completely grown. Ideally, in every
terminal node there will be only one observation. As the number of features increases,
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the eligible feature set will be quite different from node to node. Nevertheless, significant
features finally appear in the tree and their respective success in prediction will lead to
more reliability.

4.2. Performance metrics

In this section, we provide seven prediction performance metrics to evaluate and
compare the introduced prediction models.

Accuracy

The accuracy of prediction models measures the relative percentage difference between
the predictive and actual values. It is defined as

accuracy = (100− 100

n

n∑
i=1

|yi − ŷi
yi
|)% (6)

where n is the number of data samples.

R2

R2, namely the coefficient of determination, denotes the variation in the dependent
variable explained by the independent variables. The value of R2 is no more than 1,
which is the best possible value. Notice it could be negative when a model tries to fit
nonlinear functions to sampled data [17]. The mathematical definition of R2 is expressed
as

R2 = 1−
∑n

1 (yi − ŷi)2∑n
1 (yi − 1

n

∑n
1 yi)

2
(7)

Mean Absolute Error

Mean Absolute Error (MAE) is defined to measure the average absolute deviations
between the predictive and actual values. It is formulated as

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

Root Mean Squared Error

Similar to MAE, Root Mean Squared Error (RMSE) is also an important metric to
evaluate the model performance. By squaring the errors it gives a greater weighting to
data points with a larger error. It is characterised as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (9)
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Prediction accuracy within 1,3 and 5 minutes

In practical aircraft taxi time prediction, small prediction errors are tolerable; we are
more interested in the prediction accuracy within the predefined threshold [24, 19, 27, 25].
In this study, we set the the threshold as 1, 3 and 5 minutes respectively, and provide
the prediction accuracy within the corresponding thresholds.

4.3. Feature importance identification procedure

Fit the prediction model with all 
possible features

Identify the feature with the least 
importance value

Does the feature satisfy 
termination condition?

Remove the feature and fit the model 
with the remaining features

NO

Obtain important features

YES

Figure 2: Feature importance identification with backward elimination.

As discussed in Section 1, previous research mainly focused on the performance of
developed prediction models, while little work has been done on the feature importance
identification with quantitative analysis. To better address this issue, we use an effective
backward feature elimination procedure [47] to identify the important features that affect
the taxi time. A flowchart of the proposed feature importance identification process is
illustrated in Figure 2. The idea of backward feature elimination is to select one with
the least importance value at one time (Note the importance value is calculated via the
prediction model itself, and the value is dynamically changed when features are removed),
and check whether the termination conditions have been met when removing the selected
feature. If not, the selected feature would be removed and step into choosing another
feature; otherwise the procedure terminates and the selected feature with remaining ones
would be defined as important.

The core of the procedure is to set proper termination conditions with quantitative
analysis, aiming to provide strong confidence in the feature importance identification.
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Two termination conditions are provided as follows: 1) check whether current feature im-
portance is greater than a certain value, where the feature importance value is calculated
by the prediction model itself; or 2) check whether the prediction performance goes down
by a certain value, in which the prediction accuracy within 5 minutes is selected as the
performance metric.

5. Results: Model configuration and Tuning

In this section, we first present the experiment setup, and then report the performance
of different models for taxi time prediction at three international airports. The goal of
this section is to settle on a modelling approach that produces accurate results for the
target application before we focus on our investigation of feature importance.

5.1. Experimental setup

The computational experiments are conducted on a laptop equipped with Intel Core
i5 CPU at 2.5 GHz and 8 GB of RAM on a Windows 10 64-bit OS. The prediction
models are all implemented in Python using the Scikit-Learn library. The polynomial
order of PR is selected as 2 according to preliminary experiments. Detailed parameters
for MLP, GBRT and RF are set as follows: the activation fuction, size of hidden layer,
learning rate and maximum iteration number of MLP are Relu, 100, 0.001 and 10000
respectively. The loss function, learning rate, number of boosting stages and evaluation
criterion of GBRT are least squares regression, 0.1, 1000 and mean squared error. For
RF, the number of trees, evaluation criterion, maximum depth of the tree and minimum
number of samples are 150, mean squared error, expanding until all leaves are pure, and
10 respectively. The information of the utilised data is referred to Section 3, in which 33
features are collected from three international airports, i.e., MAN, ZRH and HKG. 70%
of the entire data is used for training, and the remaining 30% is used for testing. The
training data was then split using 10-fold cross validation. To fairly compare different
prediction models, the same seeds were used to randomly generate the subsets for cross-
validation. The performance metrics marked Training presented in the tables below are
the average values over the ten folds, and those marked Testing are on the 30% unseen
test data.

For convenient performance comparisons on different features, we further divide the
introduced features into five groups as follows. These feature groups will be applied and
compared in the following experiments.

• Group A (8 features): Include general aircraft and airport operational information denoted in
Table 2.

• Group B (12 features): Add airport congestion information (Table 3) to Group A.

• Group C (18 features): Add aircraft average speed information (Table 5) to Group B.
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• Group D (29 features): Add airport local weather information (Table 6) to Group C.

• Group E (33 features): Add airport historical congestion information (Table 4) to Group D.

5.2. Base line

Table 7: Results of base line prediction methods.

MAN ZRH HKG

EURO SELF EURO SELF EURO SELF

Accuracy (%) -24.93 41.28 -262.33 -32.30 -185.83 55.56
R2 -1.19 0.32 -1.68 0.38 -3.16 0.63

MAE 6.59 3.16 7.54 2.74 14.57 3.40
RMSE 7.84 4.37 8.79 4.21 15.82 4.69

< 1 min (%) 8.05 23.41 6.40 30.17 1.07 19.66
< 3 min (%) 24.62 59.27 19.91 71.13 3.65 60.90
< 5 min (%) 39.82 81.01 34.66 84.82 8.14 77.73

Before we proceed to our modelling results, as a base line to our experiments, Table 7
presents prediction results using the average taxi-in and taxi-out time from EUROCON-
TROL (EURO) and the collected data itself (SELF). The average taxi-in and taxi-out
times at MAN, ZRH and HKG are 6.7/14.3, 5.4/13.5 and 6.6/23.7 minutes from EURO-
CONTROL report. The corresponding times from the data itself are 5.0/11.6, 2.8/9.6
and 4.8/17.2 minutes.

5.3. Performance of different prediction models

Since Group D contains all available features that are practical for predicting aircraft
taxi time, it is utilised for model comparisons at three international airports. The results
are provided in Tables 8 to 10, in which the best value for each performance metric is
marked in bold.

Overall, RF outperforms other models across the three airports, closely followed by
GBRT. RF also has a very similar performance on the training and testing sets. PR
performs better than LR in all metrics for ZRH and HKG, while LR has close MAE and
RMSE compared to PR. This is logical – LR can be viewed as a special PR model with
only 1st linear order, and the addition of 2nd order in PR may sacrifice certain absolute
errors to improve the prediction accuracy within time intervals. MLP always has poorest
results, and the performance differences of the training and testing sets are relatively
sinificant, specially for ZRH. We note that accuracy for ZRH is lower than for the other
airports, whereas the other metrics vary much less. The results for the baseline suggest
that simple averages yield poorer results at ZRH than the other two airports; in turn
suggests a greater variation in times. This makes sense as the runway entry/exit points
are much more spread out than at the other airports. With runway crossings too, it is a
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Table 8: Prediction models performance comparisons for Manchester Airport. Bold numbers indicate
the best performance in terms of the corresponding metrics.

Model MLP LR PR GBRT RF

Training Accuracy (%) 50.06 63.53 63.72 68.18 69.89
R2 0.30 0.55 0.49 0.58 0.60

MAE 3.30 2.48 2.52 2.38 2.29
RMSE 4.44 3.58 3.79 3.43 3.35

< 1 min (%) 21.10 31.13 30.90 31.97 33.84
< 3 min (%) 56.72 70.77 70.75 72.63 74.38
< 5 min (%) 78.63 87.82 87.89 89.20 89.75

Testing Accuracy (%) 57.29 63.31 64.08 67.04 70.34
R2 0.43 0.56 0.56 0.59 0.61

MAE 2.81 2.46 2.46 2.35 2.25
RMSE 3.98 3.52 3.49 3.40 3.31

< 1 min (%) 26.04 30.90 30.34 31.75 33.80
< 3 min (%) 66.00 71.91 70.93 72.92 75.40
< 5 min (%) 84.31 87.93 88.03 89.85 89.85

Table 9: Prediction models performance comparisons for Zurich Airport. Bold numbers indicate the best
performance in terms of the corresponding metrics.

Model MLP LR PR GBRT RF

Training Accuracy (%) 8.25 16.31 27.29 43.29 47.24
R2 0.57 0.60 0.12 0.67 0.67

MAE 2.29 2.07 2.05 1.84 1.76
RMSE 3.49 3.34 4.81 3.06 3.06

< 1 min (%) 34.35 41.73 43.99 48.17 52.15
< 3 min (%) 75.79 78.84 79.74 81.58 83.03
< 5 min (%) 90.00 90.86 91.34 92.64 92.74

Testing Accuracy (%) -22.15 21.88 29.13 44.65 46.23
R2 0.09 0.61 0.62 0.67 0.67

MAE 4.16 2.12 2.06 1.87 1.78
RMSE 5.24 3.44 3.38 3.15 3.10

< 1 min (%) 8.19 42.55 43.94 47.58 51.74
< 3 min (%) 36.93 78.33 79.30 81.73 82.85
< 5 min (%) 73.71 90.21 90.57 92.58 92.53
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Table 10: Prediction models performance comparisons for Hong Kong Airport. Bold numbers indicate
the best performance in terms of the corresponding metrics.

Model MLP LR PR GBRT RF

Training Accuracy (%) 47.65 75.40 79.02 79.63 80.42
R2 0.58 0.82 0.82 0.85 0.84

MAE 3.79 2.19 2.02 1.96 1.96
RMSE 4.99 3.30 3.27 3.03 3.10

< 1 min (%) 18.22 39.54 44.36 46.10 47.87
< 3 min (%) 50.60 75.24 77.61 78.29 77.90
< 5 min (%) 71.67 89.01 90.69 90.73 90.63

Testing Accuracy (%) 45.11 76.43 79.55 80.31 80.80
R2 0.54 0.81 0.83 0.83 0.84

MAE 4.16 2.28 2.08 2.03 1.96
RMSE 5.32 3.45 3.27 3.23 3.10

< 1 min (%) 10.62 38.50 44.18 46.55 48.09
< 3 min (%) 40.52 73.74 76.68 77.36 77.79
< 5 min (%) 73.29 88.40 89.90 90.19 90.53

considerably more complex picture so unsurprising that it is harder to model. The taxi
times at Zurich are on average a little shorter, so the metric accuracy can drop while the
metrics related to the 1, 3 and 5 minute thresholds remain much the same.

We also observe that all prediction models have consistent performance across the
three airports, e.g., the variation of prediction accuracy within 5 minutes for different
airports is less than 5% for each model. In conclusion, RF has the best prediction
performance among the introduced five models, and we apply RF as the prediction model
for the following experiments using different feature groups.

6. Results: Feature importance

In this section we investigate the prediction performance with respect to the different
features. The goal is to determine which features are most important for constructing
accurate models of taxi time. We begin by using different feature groups. We then
investigate and discuss the taxi time distributions and importance for individual features.

6.1. Performance of different feature groups

We introduced a set of new features in Section 3 that could improve the taxi time
prediction performance. To investigate the impact of different features, we test the RF
model on Groups A, B, C, D and E, respectively. Note Group E contains the historical
congestion features which cannot be obtained in practice, and here we use the results on
Group E to evaluate and compare to other feature groups.

The prediction performance of RF using different feature groups are reported in Ta-
bles 11 to 13, where the best performance value for each metric among Groups A, B,
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C, D is in bold. The prediction results of the training and testing sets using different
feature groups are consistent for each airport. Besides, as shown in Tables 18 to 20 in
Appendix B, the standard deviations of the prediction results have very small variations
across feature groups. There is no apparent trend that the standard deviations increase
with adding more features, indicating the RF model with random parameters has stable
performance when considering more features.

Table 11: Prediction performance comparisons on different feature groups for Manchester Airport. Bold
numbers indicate the best performance in terms of the corresponding metrics excluding Group E.

Feature Group A B C D E

Training Accuracy (%) 70.07 70.29 70.13 70.09 73.32
R2 0.57 0.59 0.61 0.61 0.70

MAE 2.34 2.29 2.27 2.28 2.04
RMSE 3.48 3.40 3.34 3.34 2.92

< 1 min (%) 34.32 34.39 34.13 34.28 36.84
< 3 min (%) 73.47 74.30 74.54 74.56 77.88
< 5 min (%) 89.28 89.72 89.79 89.76 92.51

Testing Accuracy (%) 70.67 70.89 70.66 70.47 73.69
R2 0.57 0.59 0.60 0.60 0.69

MAE 2.35 2.30 2.30 2.29 2.05
RMSE 3.50 3.43 3.39 3.37 2.96

< 1 min (%) 34.06 34.30 34.25 34.13 37.13
< 3 min (%) 73.75 74.04 73.93 74.60 77.66
< 5 min (%) 89.19 89.67 89.50 89.80 92.33

It is evident Groups C and D with additional aircraft speed and weather condition
features have overall better performance comparing to Groups A and B. Moreover, the
historical congestion features in Group E significantly improved the prediction results in
terms of all performance metrics, indicating the congestion conditions indeed have huge
impact on the taxi time. A possible explanation for this is simply that, even with constant
traffic levels, the longer the taxi time, the more aircraft will stop or start moving.

When we closely look at the prediction results on Groups B and C, similar perfor-
mances can be observed. Compared to Group B, the prediction accuracy on Group C
increases slightly for HKG, while it has almost the same results (or even slightly worse
in some metrics) for MAN and ZRH. Only when aircraft speed and weather condition
features are considered together in Group D, does the model have better performance
comparing to Groups A and B.

It demonstrates that the introduced new features, at least some of them, contribute to
more accurate taxi time prediction. However, which and to what extent the features are
important to the taxi time remains unclear. Therefore, we further analyse and identify
the feature importance in the next section.
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Table 12: Prediction performance comparisons on different feature groups for Zurich Airport. Bold
numbers indicate the best performance in terms of the corresponding metrics excluding Group E.

Feature Group A B C D E

Training Accuracy (%) 48.92 48.95 47.37 47.24 64.16
R2 0.63 0.66 0.66 0.67 0.84

MAE 1.93 1.78 1.79 1.76 1.33
RMSE 3.24 3.11 3.13 3.06 2.10

< 1 min (%) 49.14 52.28 52.00 52.15 57.13
< 3 min (%) 79.79 82.58 82.70 83.03 89.30
< 5 min (%) 91.54 92.51 92.44 92.74 96.63

Testing Accuracy (%) 48.67 48.01 46.14 46.23 64.37
R2 0.64 0.66 0.65 0.67 0.85

MAE 1.94 1.81 1.82 1.78 1.33
RMSE 3.27 3.16 3.18 3.10 2.15

< 1 min (%) 48.74 52.26 51.66 51.74 58.01
< 3 min (%) 79.42 82.17 82.17 82.85 89.50
< 5 min (%) 91.41 92.29 92.27 92.53 96.69

Table 13: Prediction performance comparisons on different feature groups for Hong Kong Airport. Bold
numbers indicate the best performance in terms of the corresponding metrics excluding Group E.

Feature Group A B C D E

Training Accuracy (%) 76.36 79.53 80.44 80.42 85.86
R2 0.72 0.82 0.84 0.84 0.93

MAE 2.61 2.07 1.96 1.96 1.34
RMSE 4.06 3.27 3.10 3.10 1.99

< 1 min (%) 43.95 47.15 47.94 47.87 55.72
< 3 min (%) 68.13 76.30 77.80 77.90 88.90
< 5 min (%) 81.83 89.26 90.57 90.63 97.31

Testing Accuracy (%) 76.80 79.93 80.79 80.80 86.52
R2 0.73 0.82 0.84 0.84 0.93

MAE 2.60 2.07 1.97 1.96 1.36
RMSE 4.06 3.28 3.11 3.10 2.07

< 1 min (%) 44.21 47.41 48.17 48.09 55.49
< 3 min (%) 68.49 76.03 77.70 77.79 88.32
< 5 min (%) 82.10 89.01 90.42 90.53 97.08
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6.2. Feature importance identification

As discussed in Section 4.3, the feature importance value extracted from the prediction
model is necessary for the identification procedure. The RF model is a combination of
tree predictors which can provide useful internal estimates, e.g. error, correlation and
feature importance [45]. Specifically, the importance of a feature in RF is computed as
the normalized total reduction of the criterion brought by that feature. It is also known as
the Gini importance. Detailed explanations of Gini importance and feature importance
calculation are referred to [48]. We therefore can directly use the feature importance
metric from RF, enabling the proposed feature importance identification procedure.

The feature importance rankings from RF on Group D (29 features) are illustrated in
Figure 3, where the features with importance value less than 0.01 are omitted. Note the
sum of importance value for all features is one. To better understand and evaluate the
feature importance values, some representatives of taxi time distributions with different
features are illustrated in Figures 4 to 6.

Clearly depArr, denoting whether the aircraft is departure or arrival, is always the
most important. In particular, the importance value of depArr is up to 0.7 for HKG,
indicating whether the flight is departure or arrival has dominant influence on the taxi
time. The same conclusions can be made when we look at the taxi time distributions
with depArr, in which the arrival aircraft indeed have an average shorter taxi time than
that of departure flight.

Following depArr, distance, NDepDep (the number of other aircraft on the way to
runway when the current aircraft starts departing), angle sum, distance long, and average
speed features also have large importance values across the three airports. In line with the
distribution plots with these features, the taxi time indeed varies against corresponding
feature values. For example, as the values of distance and NDepDep increase, the aircraft
mean taxi time also has an increasing trend. Meanwhile, we observe that the importance
values of other congestion related features, e.g., NDepArr, NArrArr and NArrDep, are
less than 0.01 for three airports. These findings demonstrate that only the congestion
information, in particular the departure queuing length, heavily impacts the departure
aircraft. The above findings are in line with the queuing model [15] applied to taxi
time prediction. Similarly, the average speed features, especially the ones for departure
flights AvgSpdLast5Dep and AvgSpdLast10Dep, have evident impacts on the taxi time.
This observation also reveals that the departure aircraft are easily influenced by the
airport operational conditions.

The budget airline and runway info features are considered in the prediction model
following discussions with airport practitioners. However, budget airline only has a small
importance value. The distributions of taxi time with budget airline in Figure 4(h) con-
firm this finding; there is no evident differences of the taxi time distributions between
the budget and non-budget airlines. It is interesting to see that runway info only has a
large importance value for ZRH, which is consistent with its taxi time distributions in
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depArr 0.428966 depArr                  4.289657
distance 0.245417 distance                2.454173
angle_sum 0.052075 angle_sum               0.520750
AvgSpdLa 0.039841 AvgSpdLast5Dep          0.398412
NDepDep 0.03367 NDepDep                 0.336695
aircraft_we 0.030827 aircraft_weight         0.308270
AvgSpdLa 0.028432 AvgSpdLast10Dep         0.284322
AvgSpdLa 0.020172 AvgSpdLast10            0.201723
distance_lo0.018761 distance_long           0.187606
AvgSpdLa 0.018174 AvgSpdLast5             0.181737
AvgSpdLa 0.015606 AvgSpdLast10Arr         0.156056
AvgSpdLa 0.014288 AvgSpdLast5Arr          0.142884
Pressure 0.01391 Pressure                0.139095
angle_erro 0.011075 angle_error             0.110754
Temperatu 0.010584 TemperatureInCelsius    0.105839
WindSpee 0.007765
operation_ 0.00403
budget 0.001649
NDepArr 0.001058
isRain 0.000659
NArrDep 0.000573
VisibilityIn 0.00054
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Figure 3: Feature importance ranking for the three airports.

24



0 10 20 30 40
Taxi Time (min)

0.00

0.05

0.10

0.15

0.20

De
ns

ity
 D

ist
rib

ut
io

n departure
arrival

(a) depArr

0 10 20 30 40
Taxi Time (min)

0.00

0.05

0.10

0.15

De
ns

ity
 D

ist
rib

ut
io

n 0
1
2
3
4
5
6
7
8
9

(b) NDepDep

0 10 20 30 40
Taxi Time (min)

0.0

0.2

0.4

0.6

De
ns

ity
 D

ist
rib

ut
io

n 0 to 1000
1000 to 2000
2000 to 3000
3000 to 4000
4000 to 5000

(c) distance (m)

10 0 10 20 30 40 50
Taxi Time (min)

0.00

0.05

0.10

De
ns

ity
 D

ist
rib

ut
io

n 0 to 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350
350 to 400
400 to 450
450 to 500

(d) AvgSpdLast5Dep (m/min)

0 10 20 30 40
Taxi Time (min)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 D

ist
rib

ut
io

n 0 to 5
5 to 10
10 to 15
15 to 20

(e) Temperature (Celsius)

0 10 20 30 40
Taxi Time (min)

0.00

0.02

0.04

0.06

De
ns

ity
 D

ist
rib

ut
io

n 28.9 to 29.3
29.3 to 29.7
29.7 to 30.1
30.1 to 30.5

(f) Pressure (inHg)

0 10 20 30 40 50
Taxi Time (min)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 D

ist
rib

ut
io

n small
medium
large

(g) aircraft weight

0 10 20 30 40
Taxi Time (min)

0.00

0.02

0.04

0.06

0.08

De
ns

ity
 D

ist
rib

ut
io

n budget
non-budget

(h) budget airline

Figure 4: Taxi time distributions with different features for Manchester Airport.
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Figure 5: Taxi time distributions with different features for Zurich Airport.
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Figure 6: Taxi time distributions with different features for Hong Kong Airport.
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Figure 5(e). This could be due to the crossing runways at ZRH. As seen in Figure 1(b),
ZRH has three runways and two of them cross each other. Figure 5 shows that the taxi
times are very different for the modes 32/34 and 14/16. The crossing has as well a small
influence for cases where runway 28 is in use as arrival runway but most flights try to
leave the runway before the intersection. Therefore, the runway operational conditions,
namely runway info, probably have a huge impact on the taxi time for ZRH. The im-
portance value of aircraft weight ranks 5th for MAN. Its importance can be verified with
the distributions in Figure 5(g), where the heavy aircraft typically have longer taxi time.
This can be further attributed to the fact that MAN has the largest gradient variation
of its taxiways (MAN has a glide slope of 3 degrees equal to varying 52.3 metres per
kilometer, while ZRH and HKG typically have flat taxiways). Heavy aircraft in general
require more time to accelerate in such a case.

As for the weather condition features, although 11 features are introduced in the
prediction model, only Temperature has relatively large importance value for MAN and
ZRH, and Pressure has importance value greater than 0.01 for ZRH. These results are
also consistent with taxi time distribution plots. For instance, as indicated in Figure 5(d)
for ZRH, the temperature range above 0 degree is prone to a higher density for shorter
taxi time. In contrast, when the temperature is below 0 degree, which normally indicates
not good weather, longer taxi time may be required. Notice weather conditions seem not
impacting taxi time prediction for HKG. This is probably due to its dominant depArr
feature with a 0.7 importance value; the importance values of other features are more
difficult to be greater than 0.01 for HKG comparing to that for MAN and ZRH.

Next, the feature importance identification procedure with backward elimination man-
ner is applied. The feature importance value less than 0.01 and prediction accuracy within
5 minutes are used as termination conditions, respectively. Note the importance value
for the same feature dynamically changes during the backward elimination process.

The identification results with > 0.01 feature importance and < 1% prediction accu-
racy are shown in Tables 14 and 15 respectively, where features identified as important
across the three airports are marked in bold, and the ones identified at two airports are
in underline. As highlighted in Table 14, depArr, distance, NDepDep, angle sum, dis-
tance long and departure related speed features have high importance values across the
three airports. These features can be identified as generally important features. Besides,
several features are important only for specific airports, e.g., aircraft weight, Temperature
and Pressure for MAN; Temperature, runway info, Pressure for ZRH. We regard these
features as airport specific ones.

As the termination condition switches to the prediction performance, the number of
selected features is reduced as shown in Table 15. Notice that all features in Table 15 are
presented in Table 14. Moreover, depArr, distance and NDepDep are identified as the
most three important features across the three airports.

As for the accuracy provided by the selected features, the prediction results are pre-
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Table 14: Feature importance identification with importance value (Group F). Bold features are common
to all 3 airports, underlined common to any 2.

No. MAN ZRH HGK

1 depArr depArr depArr
2 distance distance NDepDep
3 angle sum NDepDep distance
4 AvgSpdLast5Dep Temperature AvgSpdLast5Dep
5 NDepDep runway info distance long
6 aircraft weight angle sum AvgSpdLast10Dep
7 AvgSpdLast10Dep distance long angle sum
8 AvgSpdLast10 AvgSpdLast10Dep
9 distance long Pressure

10 AvgSpdLast5 AvgSpdLast10Arr
11 AvgSpdLast10Arr AvgSpdLast5
12 AvgSpdLast5Arr AvgSpdLast10
13 Pressure AvgSpdLast5Arr
14 Temperature AvgSpdLast5Dep
15 angle error

Table 15: Feature importance identification with prediction performance (Group G). Bold features are
common to all 3 airports, underlined features common to any 2 airports.

No. MAN ZRH HGK

1 depArr depArr depArr
2 distance distance NDepDep
3 angle sum NDepDep distance
4 AvgSpdLast5Dep angle sum distance long
5 AvgSpdLast10Dep Temperature AvgSpdLast5Dep
6 AvgSpdLast10 AvgSpdLast10Dep
7 NDepDep
8 aircraft weight
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Table 16: Prediction performance of RF using selected features.

Airport MAN ZRH HKG

Feature Group D F G D F G D F G

Training Accuracy 70.09 69.90 69.06 47.24 46.57 40.34 80.42 80.14 79.92
R2 0.61 0.60 0.59 0.67 0.67 0.63 0.84 0.84 0.83

MAE 2.28 2.28 2.33 1.76 1.77 1.87 1.96 1.99 2.01
RMSE 3.34 3.34 3.41 3.06 3.08 3.24 3.10 3.14 3.16
< 1 min 34.28 34.18 33.82 52.15 52.21 51.04 47.87 47.60 47.29
< 3 min 74.56 74.54 73.57 83.03 82.83 81.22 77.90 77.49 77.28
< 5 min 89.76 89.72 88.96 92.74 92.59 91.55 90.63 90.11 89.92

Testing Accuracy 70.47 70.31 69.47 46.23 45.54 39.01 80.80 80.48 80.26
R2 0.60 0.60 0.58 0.67 0.67 0.63 0.84 0.84 0.83

MAE 2.29 2.30 2.35 1.78 1.79 1.90 1.96 2.00 2.01
RMSE 3.37 3.37 3.44 3.10 3.12 3.29 3.10 3.15 3.17
< 1 min 34.13 34.22 33.93 51.74 51.81 50.61 48.09 47.65 47.40
< 3 min 74.60 74.18 73.58 82.85 82.65 80.86 77.79 77.35 77.18
< 5 min 89.80 89.74 88.85 92.53 92.34 91.62 90.53 89.95 89.76

sented in Table 16. Clearly the performance with more selected features whose importance
values are greater than 0.01 (denoted as Feature Group F) is better than that with fewer
features identified with < 1% accuracy threshold (denoted as Feature Group G). More-
over, it should be noted that the performance of the RF model using Group F are very
close to that using Group D, and even slightly better for certain performance metrics,
e.g., prediction accuracy within 1 minute for MAN and ZRH.

To further investigate which subsets of the available features can provide high predic-
tion accuracy, we remove the termination conditions in the feature importance identifi-
cation procedure, iteratively reducing features until only containing the most important
three features, i.e., depArr, distance and NDepDep. The results are presented in Figure 7,
where the red dot denotes the corresponding prediction accuracy within 5 minutes with
the finally selected features subset. The prediction accuracy remains quite stable during
the first-stage feature elimination process; therefore we aim to select fewer features which
can maintain the same accuracy level compared to Group D. We observe that for MAN,
the first dramatic decrease is from 89.64% to 89.17% when removing feature angle error .
The feature group identified to provide high prediction accuracy happens to be Group F
(15 features) for MAN. When we iteratively reduce the features for ZRH, the prediction
accuracy has very limited variations, until its value decreases to 92.34% when feature an-
gle error is removed. Therefore, we need to select the subset including Group F with
extra features angle error and WindSpeed (16 features in total) for ZRH, so that the
high prediction performance can be realised. Similarly, the critical point is found when
removing feature Visibility for HKG, and its corresponding subset consists of Group F
and runway info, NDepArr, Temperature, Pressure, WindSpeed, AvgSpdLast10Arr, an-
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(c) HKG

Figure 7: Prediction performance with iteratively reducing features until only containing the most im-
portant three ones. The Red dot denotes corresponding prediction accuracy within 5 minutes with the
finally selected features subset.

gle error, AvgSpdLast10, AvgSpdLast5Arr and AvgSpdLast5 (17 features).
In conclusion, we have demonstrated that high prediction accuracy of taxi time can

be achieved with a narrow subset of the features consisting of generally important ones
across all airports and specific ones for target airports. These findings have provided
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quantitative insights for aircraft taxi time prediction.

7. Conclusions

In this article, we have investigated aircraft taxi time prediction models and intro-
duced a set of features that may affect the taxi time, among which the runway operational
mode, budget/non-budget airlines and aircraft speed features are considered for the first
time. We aim to select a prediction model that works best for our target airports, i.e.
Manchester Airport, Zurich Airport and Hong Kong Airport. Five regression models
for taxi time prediction are compared and extensive experiments demonstrate that the
Random Forest model outperforms other prediction models for the three airports.

The major focus of our study was a feature importance identification procedure with
backward elimination, where the feature importance value is extracted from the Ran-
dom Forest model. Quantitative analysis shows that the depArr (aircraft departure or
arrival), distance (sum of taxi distance) and NDepDep (number of other aircraft on the
way to runway when current aircraft pushes back) features are identified as the most
important features across the three airports, followed by angle sum (sum of turning an-
gle), distance long (sum of taxi distance on straights of more than 500 metres) and de-
parture related speed features. Moreover, the proposed feature identification method can
define specifically important features for target airports, e.g., the aircraft weight (air-
craft weight category), Temperature and Pressure for MAN, and runway info (airport
operation mode in line with runway utilisation), Temperature and Pressure for ZRH.
An important result is that high accuracy can be achieved with a narrow subset of the
features consisting of generally important ones across all airports and specific ones for
target airports.

Future research for aircraft taxi time prediction can be oriented in several directions.
1) The slope of the airport could have a huge impact on taxi time for specific airports,
e.g. Manchester Airport. How to model the slope factor and define corresponding fea-
ture value remains unexplored. Currently, our hypothesis is that aircraft weight somehow
acts as a good proxy for such information. However, a more dedicated feature that can
capture the slope information may further improve the prediction accuracy for certain
airports. 2) The taxi time prediction underpins practical aircraft routing and schedul-
ing system. To address online decision making requirements, current taxi time prediction
model should be revised to support adaptive prediction with respect to dynamically vary-
ing features information. 3) Improving the feature importance identification procedure
is also an avenue for future research. Alternatively we could apply model compression
techniques [49], in which the generated single decision tree with high interpretability is
promising to provide better feature importance metrics, while maintaining high predic-
tion accuracy. 4) The range of machine learning approaches is constantly growing, and
it would also be interesting to test alternative models, such as Lasso Regression, Elastic
Net Regression, Regression Trees, Support Vector Regression, k-Nearest Neighbors and
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Extra Trees Regression. 5) It would, of course, also be interesting to further extend the
features covered. We could explicitly include whether or not an aircraft crosses a run-
way during its manoeuvre, or uses single or bidirectional taxiways. Wind direction and
humidity could be useful additional indicators. The present study only covered Winter
and Spring months at each airport: expanding the study to an entire year would also
provide further insight into the impact of changing weather. There is certainly room for
improving the accuracy of the models over our results and these directions may offer a
means to achieving that.
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Table 17: Abbreviations list.

ARN Stockholm-Arlanda Airport
ASDE-X Airport Surface Detection Equipment, Model X
ASPM Aviation System Perfor-mance Metrics
ASQP Airline Service Quality Performance
BCN Bacrelona-EI Airport
BOS Boston Logan International Airport
CDG Charles de Gaulle Airport
CLT Charlotte Douglas International Airpor
DFW Dallas/Fort Worth Airport
EWR Newark Liberty International Airport
FR24 FlightRadar24
FRBSs Fuzzy Rule-Based Systems
GBRT Gradient Boosted Regression Trees
HKG Hong Kong International Airport
JFK John F. Kennedy International Airport
LR Linear Regression
MAE Mean Absolute Error
MAN Manchester Airport
MLP Multilayer Perceptron
MLR Multiple Linear Regression
NN Neural Networks
PEK Beijing International Airport
PR Polynomial Regression
PRAS Preferential Runway Assignment System
PVG Shanghai Pudong International Airport
RF Random Forest
RL Reinforcement Learning
RMSE Root Mean Squared Error
RT Regression Tree
SARDA Spot and Run-way Departure Advisor
SEA Seattle International Airport
SVR Support Vector Regression
SWAP Severe Weather Avoidance Programs
TPA Tampa International Airport
ZRH Zurich Airport
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Table 18: Standard deviation of RF for Manchester Airport.

Feature Group A B C D

Training Accuracy 0.315 0.332 0.258 0.300
R2 0.009 0.009 0.010 0.010

MAE 0.023 0.026 0.025 0.025
RMSE 0.039 0.037 0.038 0.035

< 1 min 0.662 0.579 0.503 0.506
< 3 min 0.243 0.396 0.413 0.428
< 5 min 0.441 0.244 0.239 0.218
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